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Abstract

We give an introduction to the Fock space representations of the affine Lie algebras ŝln and
their quantum analogues Uq(ŝln). We explain the construction of their canonical bases, and
the relationship with decomposition matrices of q-Schur algebras at an nth root of 1. In the last
section we give a brief survey of some recent higher level analogues of these constructions.

Nous donnons une introduction aux représentations de Fock des algèbres de Lie affines
ŝln et de leurs analogues quantiques Uq(ŝln). Nous expliquons la construction de leurs bases
canoniques, et leur relation avec les matrices de décomposition des q-algèbres de Schur en
une racine n-ième de l’unité. Dans la dernière partie nous donnons un bref compte-rendu de
résultats analogues récents pour les niveaux supérieurs à 1.
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2.1 The Lie algebra ŝln and its wedge space representations . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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3.1 The quantum affine algebra Uq(ŝln) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 The tensor representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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1 Introduction

In the mathematical physics literature, the Fock space F is the carrier space of the natural irre-
ducible representation of an infinite-dimensional Heisenberg Lie algebra H. Namely, F is the
polynomial ring C[xi | i ∈N∗], and H is the Lie algebra generated by the derivations ∂/∂xi and the
operators of multiplication by xi.

In the 70’s it was realized that the Fock space could also give rise to interesting concrete
realizations of highest weight representations of Kac-Moody affine Lie algebras ĝ. Indeed ĝ has
a natural Heisenberg subalgebra p (the principal subalgebra) and the simplest highest weight ĝ-
module, called the basic representation of ĝ, remains irreducible under restriction to p. Therefore,
one can in principle extend the Fock space representation of p to a Fock space representation F
of ĝ. This was first done for ĝ= ŝl2 by Lepowsky and Wilson [LW]. The Chevalley generators of
ŝl2 act on F via some interesting but complicated differential operators of infinite degree closely
related to the vertex operators invented by physicists in the theory of dual resonance models. Soon
after, this construction was generalized to all affine Lie algebras ĝ of A,D,E type [KKLW].

Independently and for different purposes (the theory of soliton equations) similar results were
obtained by Date, Jimbo, Kashiwara and Miwa [DJKM] for classical affine Lie algebras. Their
approach is however different. They first endow F with an action of an infinite rank affine Lie
algebra and then restrict it to various subalgebras ĝ to obtain their basic representations. In type
A for example, they realize in F the basic representation of gl∞ (related to the KP-hierarchy
of soliton equations) and restrict it to natural subalgebras isomorphic to ŝln (n > 2) to get Fock
space representations of these algebras (related to the KdV-hierarchy for n = 2). In this approach,
the Fock space is rather the carrier space of the natural representation of an infinite-dimensional
Clifford algebra, that is, an infinite dimensional analogue of an exterior algebra. The natural
isomorphism between this “fermionic” construction and the previous “bosonic” construction is
called the boson-fermion correspondence.

The basic representation of ĝ has level one. Higher level irreducible representations can also
be constructed as subrepresentations of higher level Fock space representations of ĝ [F1, F2].

After quantum enveloping algebras of Kac-Moody algebras were invented by Jimbo and Drin-
feld, it became a natural question to construct the q-analogues of the above Fock space represen-
tations. The first results in this direction were obtained by Hayashi [H]. His construction was
soon developed by Misra and Miwa [MM], who showed that the Fock space representation of
Uq(ŝln) has a crystal basis (crystal bases had just been introduced by Kashiwara) and described it
completely in terms of Young diagrams. This was the first example of a crystal basis of an infinite-
dimensional representation. Another construction of the level one Fock space representation of
Uq(ŝln) was given by Kashiwara, Miwa and Stern [KMS], in terms of semi-infinite q-wedges. This
relied on the polynomial tensor representations of Uq(ŝln) which give rise to the quantum affine
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analogue of the Schur-Weyl duality obtained by Ginzburg, Reshetikhin and Vasserot [GRV], and
Chari and Pressley [CP] independently.

In [LLT] and [LT1], some conjectures were formulated relating the decomposition matrices
of type A Hecke algebras and q-Schur algebras at an nth root of unity on the one hand, and the
global crystal basis of the Fock space representation F of Uq(ŝln) on the other hand. Note that
[LT1] contains in particular the definition of the global basis of F , which does not follow from the
general theory of Kashiwara or Lusztig. The conjecture on Hecke algebras was proved by Ariki
[A1], and the conjecture on Schur algebras by Varagnolo and Vasserot [VV].

Slightly after, Uglov gave a remarkable generalization of the results of [KMS], [LT1], and
[VV] to higher levels. Together with Takemura [TU], he introduced a semi-infinite wedge real-
ization of the level ` Fock space representations of Uq(ŝln), and in [U1, U2] he constructed their
canonical bases and expressed their coefficients in terms of Kazhdan-Lusztig polynomials for the
affine symmetric groups.

A full understanding of these coefficients as decomposition numbers is still missing. Recently,
Yvonne [Y2] has formulated a precise conjecture stating that, under certain conditions on the com-
ponents of the multi-charge of the Fock space, the coefficients of Uglov’s bases should give the de-
composition numbers of the cyclotomic q-Schur algebras of Dipper, James and Mathas [DiJaMa].
Rouquier [R] has generalized this conjecture to all multi-charges. In his version the cyclotomic
q-Schur algebras are replaced by some quasi-hereditary algebras arising from the category O of
the rational Cherednik algebras attached to complex reflection groups of type G(`,1,m).

In these lectures we first present in Section 2 the Fock space representations of the affine Lie
algebra ŝln. We chose the most suitable construction for our purpose of q-deformation, namely,
we realize F as a space of semi-infinite wedges (the fermionic picture). In Section 3 we explain
the level one Fock space representation of Uq(ŝln) and construct its canonical bases. In Section 4
we explain the conjecture of [LT1] and its proof by Varagnolo and Vasserot. Finally, in Section 5
we indicate the main lines of Uglov’s construction of higher level Fock space representations of
Uq(ŝln), and of their canonical bases, and we give a short review of Yvonne’s work.

2 Fock space representations of ŝln

2.1 The Lie algebra ŝln and its wedge space representations

We fix an integer n > 2.

2.1.1 The Lie algebra sln

The Lie algebra g= sln of traceless n×n complex matrices has Chevalley generators

Ei = Ei,i+1, Fi = Ei+1,i, Hi = Eii−Ei+1,i+1, (1 6 i 6 n−1).

Its natural action on V = Cn =⊕n
i=1Cvi is

Eiv j = δ j,i+1vi, Fiv j = δ j,ivi+1, Hiv j = δ j,ivi−δ j,i+1vi+1, (1 6 i 6 n−1).

We may picture the action of g on V as follows

v1
F1−→ v2

F2−→ ·· · Fn−1−→ vn
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2.1.2 The Lie algebra L(sln)

The loop space L(g) = g⊗C[z,z−1] is a Lie algebra under the Lie bracket

[a⊗ zk,b⊗ zl] = [a,b]⊗ zk+l, (a,b ∈ g, k, l ∈ Z).

The loop algebra L(g) naturally acts on V (z) =V ⊗C[z,z−1] by

(a⊗ zk) · (v⊗ zl) = av⊗ zk+l, (a ∈ g, v ∈V, k, l ∈ Z).

2.1.3 The Lie algebra ŝln

The affine Lie algebra ĝ= ŝln is the central extension L(g)⊕Cc with Lie bracket

[a⊗ zk +λc, b⊗ zl +µc] = [a,b]⊗ zk+l + k δk,−l tr(ab)c, (a,b ∈ g, λ ,µ ∈ C, k, l ∈ Z).

This is a Kac-Moody algebra of type A(1)
n−1 with Chevalley generators

ei = Ei⊗1, fi = Fi⊗1, hi = Hi⊗1, (1 6 i 6 n−1),

e0 = En1⊗ z, f0 = E1n⊗ z−1, h0 = (Enn−E11)⊗1+ c.

We denote by Λi (i = 0,1, . . . ,n−1) the fundamental weights of ĝ. By definition, they satisfy

Λi(h j) = δi j, (0 6 i, j 6 n−1).

Let V (Λ) be the irreducible ĝ-module with highest weight Λ [K, §9.10]. If Λ = ∑i aiΛi then the
central element c = ∑i hi acts as ∑i aiId on V (Λ), and we call ` = ∑i ai the level of V (Λ). More
generally, a representation V of ĝ is said to have level ` if c acts on V by multiplication by `.

The loop representation V (z) can also be regarded as a representation of ĝ, in which c acts
trivially. Define

ui−nk = vi⊗ zk, (1 6 i 6 n, k ∈ Z).

Then (u j | j ∈ Z) is a C-basis of V (z). We may picture the action of ĝ on V (z) as follows

· · · fn−2−→ u−1
fn−1−→ u0

f0−→ u1
f1−→ u2

f2−→ ·· · fn−1−→ un
f0−→ un+1

f1−→ un+2
f2−→ ·· ·

Note that this is not a highest weight representation.

2.1.4 The tensor representations

For r ∈ N∗, we consider the tensor space V (z)⊗r. The Lie algebra ĝ acts by derivations on the
tensor algebra of V (z). This induces an action on each tensor power V (z)⊗r, namely,

x(ui1⊗·· ·⊗uir) = (xui1)⊗·· ·⊗uir + · · ·+ui1⊗·· ·⊗ (xuir), (x ∈ ĝ, i1, · · · , ir ∈ Z).

Again c acts trivially on V (z)⊗r.
We have a vector space isomorphism V⊗r⊗C[z±1 , . . . ,z±r ]

∼−→V (z)⊗r given by

(vi1⊗·· ·⊗ vir)⊗ z j1
1 · · ·z

jr
r 7→ (vi1⊗ z j1)⊗·· ·⊗ (vir ⊗ z jr), (1 6 i1, . . . , ir 6 n, j1, . . . , jr ∈ Z).
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2.1.5 Action of the affine symmetric group

The symmetric group Sr acts on V⊗r⊗C[z±1 , . . . ,z±r ] by

σ(vi1⊗·· ·⊗ vir)⊗ z j1
1 · · ·z

jr
r = (vi

σ−1(1)
⊗·· ·⊗ vi

σ−1(r)
)⊗ z

j
σ−1(1)

1 · · ·z
j
σ−1(r)

r , (σ ∈Sr).

Moreover the abelian group Zr acts on this space, namely (k1, . . . ,kr) ∈ Zr acts by multiplication
by zk1

1 · · ·zkr
r . Hence we get an action on V (z)⊗r of the affine symmetric group Ŝr := Sr nZr.

Clearly, this action commutes with the action of ĝ.
It is convenient to describe this action in terms of the basis

(ui = ui1⊗ ·· ·⊗uir | i = (i1, . . . , ir) ∈ Zr).

Denote by sk = (k,k+1), (k = 1, . . . ,r−1) the simple transpositions of Sr. The affine symmetric
group Ŝr acts naturally on Zr via

sk · i = (i1, . . . , ik+1, ik, . . . ir), (1 6 k 6 r−1),

z j · i = (i1, . . . , i j−n, . . . , ir), (1 6 j 6 r),

and we have
wui = uw·i, (i ∈ Zr, w ∈ Ŝr).

Thus the basis vectors ui are permuted, and each orbit has a unique representative ui with

i ∈ Ar := {i ∈ Zr | 1 6 i1 6 i2 6 · · ·6 ir 6 n}.

Let i ∈ Ar. The stabilizer Si of ui in Ŝr is the subgroup of Sr generated by the sk such that
ik = ik+1, a parabolic subgroup. Hence we have finitely many orbits, and each of them is of the
form Ŝr/Si for some parabolic subgroup Si of Sr.

2.1.6 The wedge representations

Consider now the wedge product ∧rV (z). It has a basis consisting of normally ordered wedges

∧ui := ui1 ∧ui2 ∧·· ·∧uir , (i = (i1 > i2 > · · ·> ir) ∈ Zr).

The Lie algebra ĝ also acts by derivations on the exterior algebra ∧V (z), and this restricts to an
action on ∧rV (z), namely,

x(ui1 ∧·· ·∧uir) = (xui1)∧·· ·∧uir + · · ·+ui1 ∧·· ·∧ (xuir), (x ∈ ĝ, i1, · · · , ir ∈ Z).

Again c acts trivially on ∧rV (z).
We may think of ∧rV (z) as the vector space quotient of V (z)⊗r by the subspace

Ir :=
r−1

∑
k=1

Im(sk + Id)⊂V (z)⊗r

of “partially symmetric tensors”.
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2.1.7 Action of the center of CŜr

The space Ir is not stable under the action of Ŝr. (For example if r = 2, we have z1(u0⊗ u0) =
u−n⊗u0, which is not symmetric.) Hence Ŝr does not act on the wedge product ∧rV (z). However,
for every k ∈ Z, the element

bk :=
r

∑
i=1

zk
i

of the group algebra CŜr commutes with Sr ⊂ ZŜr. Therefore it has a well-defined action on
∧rV (z), given by

bk(∧ui) = ui1−nk∧ui2 ∧·· ·∧uir +ui1 ∧ui2−nk∧·· ·∧uir + · · ·+ui1 ∧ui2 ∧·· ·∧uir−nk.

This action commutes with the action of ĝ on ∧rV (z). The elements bk (k ∈ Z) generate a subal-
gebra of CŜr isomorphic to the algebra of symmetric Laurent polynomials in r variables.

2.2 The level one Fock space representation of ŝln
We want to pass to the limit r→ ∞ in the wedge product ∧rV (z).

2.2.1 The Fock space F

For s > r define a linear map ϕr,s : ∧rV (z)−→∧sV (z) by

ϕr,s(∧ui) := ∧ui∧u−r ∧u−r−1∧·· ·∧u−s+1.

Then clearly ϕs,t ◦ϕr,s = ϕr,t for any r 6 s 6 t. Let

∧∞V (z) := lim
→
∧r V (z)

be the direct limit of the vector spaces ∧rV (z) with respect to the maps ϕr,s. Each ∧ui in ∧rV (z)
has an image ϕr(∧ui) ∈ ∧∞V (z), which should be thought of as the “infinite wedge”

ϕr(∧ui)≡ ∧ui∧u−r ∧u−r−1∧·· ·∧u−s∧·· ·

The space F := ∧∞V (z) is called the fermionic Fock space. It has a basis consisting of all infinite
wedges

ui1 ∧ui2 ∧·· ·∧uir ∧·· · , (i1 > i2 > · · ·> ir > · · ·),
which coincide except for finitely many indices with the special infinite wedge

| /0〉 := u0∧u−1∧·· ·∧u−r ∧u−r−1∧·· ·

called the vacuum vector. It is convenient to label this basis by partitions. A partition λ is a finite
weakly decreasing sequence of positive integers λ1 > λ2 > · · ·> λs > 0. We make it into an infinite
sequence by putting λ j = 0 for j > s, and we set

|λ 〉 := ui1 ∧ui2 ∧·· ·∧uir ∧·· · ,

where ik = λk− k+1 (k > 1).
This leads to a natural N-grading on F given by deg|λ 〉 = ∑i λi for every partition λ . The

dimension of the degree d component F (d) of F is equal to number of partitions λ of d. This can
be encoded in the following generating function

∑
d>0

dimF (d) td = ∏
k>1

1
1− tk . (1)
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2.2.2 Young diagrams

Let P denote the set of all partitions. Elements of P are represented graphically by Young
diagrams. For example the partition λ = (3,2) is represented by

If γ is the cell in column number i and row number j, we call i− j the content of γ . For example
the contents of the cells of λ are

−1 0
0 1 2

Given i ∈ {0, . . . ,n−1}, we say that γ is an i-cell if its content c(γ) is congruent to i modulo n.

2.2.3 The total Fock space F

It is sometimes convenient to consider, for m ∈ Z, similar Fock spaces Fm obtained by using the
modified family of embeddings

ϕ
(m)
r,s (∧ui) := ∧ui∧um−r ∧um−r−1∧·· ·∧um−s+1.

The space Fm has a basis consisting of all infinite wedges

ui1 ∧ui2 ∧·· ·∧uir ∧·· · , (i1 > i2 > · · ·> ir > · · ·),

which coincide, except for finitely many indices, with

| /0m〉 := um∧um−1∧·· ·∧um−r ∧um−r−1∧·· ·

The space F = ⊕m∈ZFm is called the total Fock space, and Fm is the Fock space of charge m.
Most of the time, we shall only deal with F = F0.

2.2.4 Action of fi

Consider the action of the Chevalley generators fi (i= 0,1, . . .n−1) of ĝ on the sequence of vector
spaces ∧rV (z). It is easy to see that, for ∧ui ∈ ∧rV (z),

fi ϕr,s(∧ui) = ϕr+1,s fi ϕr,r+1 (∧ui)

for all s > r.

Exercise 1 Check this.

Hence one can define an endomorphism f ∞
i of F by

f ∞
i ϕr(∧ui) = ϕr+1 fi ϕr,r+1 (∧ui). (2)

The action of f ∞
i on the basis {|λ 〉 | λ ∈P} has the following combinatorial translation in terms

of Young diagrams:
f ∞
i |λ 〉= ∑

µ

|µ〉, (3)

where the sum is over all partitions µ obtained from λ by adding an i-cell.

Exercise 2 Check it. Check that, for n = 2, we have

f ∞
0 |3,1〉= |3,2〉+ |3,1,1〉, f ∞

1 |3,1〉= |4,1〉.
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2.2.5 Action of ei

Similarly, one can check that putting e∞
i ϕr(∧ui) := ϕr(ei ∧ ui) one gets a well-defined endomor-

phism of F . Its combinatorial description is given by

e∞
i |µ〉= ∑

λ

|λ 〉, (4)

where the sum is over all partitions λ obtained from µ by removing an i-cell.

Exercise 3 Check it. Check that, for n = 2, we have

e∞
0 |3,1〉= |2,1〉, e∞

1 |3,1〉= |3〉.

Theorem 1 The map
ei 7→ e∞

i , fi 7→ f ∞
i , (0 6 i 6 n−1),

extends to a level one representation of ĝ on F .

Proof — Let µ be obtained from λ by adding an i-cell γ . Then we call γ a removable i-cell of µ

or an addable i-cell of λ . One first deduces from Eq. (3) (4) that h∞
i := [e∞

i , f ∞
i ] is given by

h∞
i |λ 〉= Ni(λ )|λ 〉, (5)

where Ni(λ ) is the number of addable i-cells of λ minus the number of removable i-cells of λ .
It is then easy to check from Eq. (3) (4) (5) that the endomorphisms e∞

i , f ∞
i , h∞

i (0 6 i 6 n− 1)
satisfy the Serre relations of the Kac-Moody algebra of type A(1)

n−1 (see [K, §0.3, §9.11]). Now,
c = h0 +h1 + · · ·+hn−1 acts by

c|λ 〉=
n−1

∑
i=0

Ni(λ )|λ 〉.

Clearly, the difference between the total number of addable cells and the total number of removable
cells of any Young diagram is always equal to 1, hence we have ∑

n−1
i=0 Ni(λ ) = 1 for every λ . 2

Thus the Fock space F is endowed with an action of ĝ. Note that, although every ∧rV (z) is
a level 0 representation, their limit F is a level 1 representation. This representation is called the
level 1 Fock space representation of ĝ.

Note also that ∧rV (z) has no primitive vector, i.e. no vector killed by every ei. But F has
many primitive vectors.

Exercise 4 Take n = 2. Check that v0 = | /0〉 and v1 = |2〉− |1,1〉 are primitive vectors. Can you
find an infinite family of primitive vectors ?

2.2.6 Action of bk

Recall the endomorphisms bk (k ∈ Z) of ∧rV (z) (see §2.1.7). It is easy to see that, if k 6= 0, the
vector ϕs bk ϕr,s(∧ui) is independent of s for s > r large enough. Hence, one can define endomor-
phisms b∞

k (k ∈ Z∗) of F by

b∞
k ϕr(∧ui) := ϕs bk ϕr,s(∧ui) (s� 1). (6)

In other words

b∞
k (ui1 ∧ui2 ∧·· ·) = (ui1−nk∧ui2 ∧·· ·)+(ui1 ∧ui2−nk∧·· ·)+ · · ·

where in the right-hand side, only finitely many terms are nonzero. By construction, these endo-
morphisms commute with the action of ĝ on F . However they no longer generate a commutative
algebra but a Heisenberg algebra, as we shall now see.
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2.2.7 Bosons

In fact, we will consider more generally the endomorphisms βk (k ∈ Z∗) of F defined by

βk(ui1 ∧ui2 ∧·· ·) = (ui1−k∧ui2 ∧·· ·)+(ui1 ∧ui2−k∧·· ·)+ · · · (7)

so that b∞
k = βnk.

Proposition 1 For k, l ∈ Z∗, we have [βk,βl] = δk,−l k IdF .

Proof — Recall the total Fock space F = ⊕m∈ZFm introduced in §2.2.3. Clearly, the definition
of the endomorphism βk of F given by Eq. (7) can be extended to any Fm. So we may consider
βk as an endomorphism of F preserving each Fm. For i ∈ Z, we also have the endomorphism wi

of F defined by wi(v) = ui∧ v. It sends Fm to Fm+1 for every m ∈ Z. For any v ∈ F, we have

βkwi(v) = βk(ui∧ v) = ui−k∧ v+ui∧βk(v),

hence [βk,wi] = wi−k. It now follows from the Jacobi identity that

[[βk,βl],wi] = [[βk,wi],βl]− [[βl,wi],βk] = [wi−k,βl]− [wi−l,βk] =−wi−k−l +wi−l−k = 0.

Let us write for short γ = [βk,βl]. We first want to show that γ = κ IdF for some constant κ .
Consider a basis element v ∈Fm. By construction we have

v = ui1 ∧·· ·∧uiN ∧| /0m−N〉

for some large enough N and i1 > i2 > · · · > iN > m−N. Since γ commutes with every wi, we
have

γ(v) = ui1 ∧·· ·∧uiN ∧ γ(| /0m−N〉). (8)

We have
γ(| /0m−N〉) = ∑

j
α j um1, j ∧·· ·∧umL, j ∧| /0m−N−L〉

for some large enough L and m1, j > · · ·> mL, j > m−N−L. Clearly, m1, j 6 m−N+ |k|+ |l|. Tak-
ing N large enough, we can assume that {m−N+1,m−N+2, . . . ,m−N+ |k|+ |l|} ⊂ {i1, . . . , iN}.
Hence we must have m1, j = m−N for every j, and this forces m2, j = m−N − 1, . . . ,mL, j =
m−N−L+1. This shows that γ(v) = κv v for some scalar κv. Now Eq. (8) shows that κv = κ| /0m−N〉
for N large enough, so κv = κ does not depend on v.

Finally, we have to calculate κ . For that, we remark that βk is an endomorphism of degree−k,
for the grading of F defined in §2.2.1. Hence we see that if k+ l 6= 0 then κ = 0. So suppose
k =−l > 0, and let us calculate [βk,βl]| /0〉. For degree reasons this reduces to βkβ−k| /0〉. It is easy
to see that β−k| /0〉 is a sum of k terms, namely

β−k| /0〉= uk∧| /0−1〉+u0∧uk−1∧| /0−2〉+ · · ·+u0∧u−1∧·· ·∧u−k+2∧u1∧| /0−k〉.

Moreover one can check that each of these k terms is mapped to | /0〉 by βk. 2

Proposition 1 shows that the endomorphisms βk (k ∈ Z∗) endow F with an action of an
infinite-dimensional Heisenberg Lie algebra H with generators pi,qi(i ∈ N∗), and K, and defining
relations

[pi,q j] = iδi,− jK, [K, pi] = [K,qi] = 0.

9



In this representation, K acts by IdF, and deg(qi) = i =−deg(pi). Its character is given by Eq. (1),
so by the classical theory of Heisenberg algebras (see e.g. [K, §9.13]), we obtain that F is isomor-
phic to the irreducible representation of H in B = C[xi | i ∈ N∗] in which pi = ∂/∂xi and qi is the
multiplication by xi. Note that we endow B with the unusual grading given by degxi = i. Thus
we have obtained a canonical isomorphism between the fermionic Fock space F and the bosonic
Fock space B. This is called the boson-fermion correspondence.

Exercise 5 Identify B =C[xi | i ∈N∗] with the ring of symmetric functions by regarding xi as the
degree i power sum (see [Mcd]). Then the Schur function sλ is given by

sλ = ∑
µ

χλ (µ)xµ/zµ ,

where for λ and µ = (1k1 ,2k2 , . . .) partitions of m,

xµ = xk1
1 xk2

2 · · · , zµ = 1k1k1!2k2k2! · · · ,

and χλ (µ) denotes the irreducible character χλ of Sm evaluated on the conjugacy class of cycle-
type µ . Show that the boson-fermion correspondence F →B maps |λ 〉 to sλ [MJD, §9.3], [K,
§14.10].

2.2.8 Decomposition of F

Let us go back to the endomorphisms b∞
k = βnk (k ∈Z∗) of §2.2.6. By Proposition 1, they generate

a Heisenberg subalgebra Hn of EndF with commutation relations

[b∞
k ,b

∞
l ] = nk δk,−l IdF , (k, l ∈ Z∗). (9)

Since the actions of ĝ and Hn on F commute with each other, we can regard F as a module over
the product of enveloping algebras U(ĝ)⊗U(Hn). Let C[H−n ] denote the commutative subalgebra
of U(Hn) generated by the b∞

k (k < 0). The same argument as in §2.2.7 shows that C[H−n ]| /0〉 is an
irreducible representation of Hn with character

∏
k>1

1
1− tnk . (10)

On the other hand, the Chevalley generators of ĝ act on | /0〉 by

ei| /0〉= 0, fi| /0〉= δi,0|1〉, hi| /0〉= δi,0| /0〉, (i = 0,1, . . . ,n−1).

It follows from the representation theory of Kac-Moody algebras that U(ĝ)| /0〉 is isomorphic to the
irreducible ĝ-module V (Λ0) with level one highest weight Λ0, whose character is (see e.g. [K, Ex.
14.3])

∏
k>0

n−1

∏
i=1

1
1− tnk+i . (11)

By comparing Eq. (1), (10), and (11), we see that we have proved that

Proposition 2 The U(ĝ)⊗U(Hn)-modules F and V (Λ0)⊗C[H−n ] are isomorphic. 2

We can now easily solve Exercise 4. Indeed, it follows from Proposition 2 that the subspace
of primitive vectors of F for the action of ĝ is C[H−n ]. Thus, for every k > 0,

b∞
−k| /0〉=

nk

∑
i=1

(−1)nk−i|i,1nk−i〉

is a primitive vector. Here, (i,1nk−i) denotes the partition (i,1,1, . . . ,1) with 1 repeated nk− i
times.
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2.3 The higher level Fock space representations of ŝln
2.3.1 The representation F [`]

Let ` be a positive integer. Following Frenkel [F1, F2], we notice that ĝ contains the subalgebra

ĝ[`] := g⊗C[z`,z−`]⊕Cc,

and that the linear map ι` : ĝ→ ĝ[`] given by

ι`(a⊗ zk) = a⊗ zk`, ι`(c) = `c, (a ∈ g, k ∈ Z),

is a Lie algebra isomorphism. Hence by restricting the Fock space representation of ĝ to ĝ[`] we
obtain a new Fock space representation F [`] of ĝ. In this representation, the central element c acts
via ι`(c) = `c, therefore by multiplication by `. So F [`] has level ` and is called the level ` Fock
space representation of ĝ. More generally, for every m ∈ Z we get from the Fock space Fm of
charge m a level ` representation Fm[`] of ŝln.

2.3.2 Antisymmetrizer construction

The representations Fm[`] can also be constructed step by step from the representation V (z) as we
did in the case ` = 1. This will help to understand their structure. In particular, it will yield an
action of ŝl` of level n on Fm[`], commuting with the level ` action of ŝln.

(a) The new action of ĝ on V (z) coming from the identification ĝ≡ ĝ[`] is as follows:

eiuk = δk≡i+1 uk−1, fiuk = δk≡i uk+1, (1 6 i 6 n−1),
e0uk = δk≡1 uk−1−(`−1)n, f0uk = δk≡0 uk+1+(`−1)n.

Here, δk≡i is the Kronecker symbol which is equal to 1 if k ≡ i mod n and to 0 otherwise. For
example, if n = 2 and `= 3, this can be pictured as follows:

· · · f0−→ u−5
f1−→ u−4

f0−→ u1
f1−→ u2

f0−→ u7
f1−→ u8

f0−→ ·· ·
· · · f0−→ u−3

f1−→ u−2
f0−→ u3

f1−→ u4
f0−→ u9

f1−→ u10
f0−→ ·· ·

· · · f0−→ u−1
f1−→ u0

f0−→ u5
f1−→ u6

f0−→ u11
f1−→ u12

f0−→ ·· ·

This suggests a different identification of the vector space V (z) with a tensor product. Let us
change our notation and write U :=⊕iCui. We consider again

V =
n⊕

i=1

Cvi,

and also

W =
⊕̀
j=1

Cw j.

Then we can identify W ⊗V ⊗C[z,z−1] with U by

w j⊗ vi⊗ zk ≡ ui+( j−1)n−`nk, (1 6 i 6 n, 1 6 j 6 `, k ∈ Z). (12)

11



Now the previous action of ĝ= ŝln on the space U reads as follows:

ei = IdW ⊗Ei⊗1, fi = IdW ⊗Fi⊗1, hi = IdW ⊗Hi⊗1, (1 6 i 6 n−1),

e0 = IdW ⊗En1⊗ z, f0 = IdW ⊗E1n⊗ z−1, h0 = IdW ⊗ (Enn−E11)⊗1.

But we also have a commuting action of g̃ := ŝl` given by

ẽi = Ẽi⊗ IdV ⊗1, f̃i = F̃i⊗ IdV ⊗1, h̃i = H̃i⊗ IdV ⊗1, (1 6 i 6 `−1),

ẽ0 = Ẽ`1⊗ IdV ⊗ z, f̃0 = Ẽ1`⊗ IdV ⊗ z−1, h̃0 = (Ẽ``− Ẽ11)⊗ IdV ⊗1.

Here, we have denoted by Ẽi j the matrix units of gl`, and we have set Ẽi = Ẽi,i+1, F̃i = Ẽi+1,i and
H̃i = Ẽi,i− Ẽi+1,i+1.

(b) From this we get as in §2.1.4 some tensor representations. Let r ∈ N∗. We have

U⊗r = (W ⊗V ⊗C[z,z−1])⊗r ∼=W⊗r⊗V⊗r⊗C[z±1 , . . . ,z
±
r ].

This inherits from U two commuting actions of ĝ and of g̃.
We have endowed V⊗r⊗C[z±1 , . . . ,z±r ] with a left action of Ŝr in §2.1.5. Similarly, we endow

W⊗r with a right action of Sr, given by

wi1⊗·· ·⊗wir ·σ = ε(σ)(wiσ(1)⊗·· ·⊗wiσ(r)) (σ ∈Sr),

where ε(σ) denotes the sign of the permutation σ .

(c) We can now pass to the wedge product and consider the representation ∧rU , on which ĝ and
g̃ act naturally. It has a standard basis consisting of normally ordered wedges

∧ui := ui1 ∧·· ·∧uir , (i1 > · · ·> ir ∈ Z).

Proposition 3 We have the following isomorphism of vector spaces

∧rU ∼=W⊗r⊗CSr

(
V⊗r⊗C[z±1 , . . . ,z

±
r ]
)
.

Proof — Let 1− denote the one-dimensional sign representation of Sr. We have

∧rU ∼= 1−⊗CSr U⊗r,

where Sr acts on U⊗r by permuting the factors. Let A and B be two vector spaces. Then it is easy
to see that

1−⊗CSr (A⊗B)⊗r ∼= A⊗r⊗CSr B⊗r,

where Sr acts on B⊗r by permuting the factors, and on A⊗r by permuting the factors and mul-
tiplying by the sign of the permutation. Recall that the left action of Sr on (V ⊗C[z±])⊗r is by
permutation of the factors, while the right action of Sr on W⊗r is by signed permutation of the
factors. It follows that

∧rU ∼=W⊗r⊗CSr

(
V ⊗C[z±]

)⊗r ∼=W⊗r⊗CSr

(
V⊗r⊗C[z±1 , . . . ,z

±
r ]
)
.

2
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(d) The elements bk = ∑
r
i=1 zk

i ∈ CŜr commute with Sr ⊂ Ŝr, hence their action on

U⊗r ∼=W⊗r⊗V⊗r⊗C[z±1 , . . . ,z
±
r ]

by multiplication on the last factor descends to ∧rU . Using Eq. (12), we see that it is given on the
basis of normally ordered wedges by

bk(∧ui) = ui1−n`k∧ui2 ∧·· ·∧uir + ui1 ∧ui2−n`k∧·· ·∧uir + · · · + ui1 ∧ui2 ∧·· ·∧uir−n`k. (13)

This action commutes with the actions of ĝ and g̃.

(e) Finally, we can pass to the limit r→∞ as in §2.2. For every charge m ∈ Z, we obtain exactly
in the same way a Fock space with a standard basis consisting of all infinite wedges

∧ui := ui1 ∧ui2 ∧·· ·∧uir ∧·· · , (i = (i1 > i2 > · · ·> ir > · · ·) ∈ ZN∗),

which coincide, except for finitely many indices, with

| /0m〉 := um∧um−1∧·· ·∧um−r ∧um−r−1∧·· ·

We shall denote that space by Fm[`], since it is equipped with a level ` action of ĝ, obtained,
as in §2.2.4, §2.2.5, by passing to the limit r→ ∞ in the action of (c). It is also equipped with
commuting actions of g̃ of level n, and of the Heisenberg algebra Hn` generated by the limits b∞

k
of the operators bk of Eq. (13), which satisfy

[b∞
j ,b

∞
k ] = n` j δ j,−k IdFm[`], ( j,k ∈ Z∗). (14)

2.3.3 Labellings of the standard basis

It is convenient to label the standard basis of Fm[`] by partitions. In fact, we shall use two different
labellings. The first one is as in §2.2.1, namely, for ∧ui ∈Fm[`] we set

λk = ik−m− k+1, (k ∈ N∗).

By the definition of Fm[`], the weakly decreasing sequence λ = (λk | k ∈ N∗) is zero for k large
enough, hence is a partition. The first labelling is

∧ui = |λ ,m〉. (15)

For the second labelling, we use Eq. (12) and write, for every k ∈ N∗,

uik = wbk ⊗ vak ⊗ zck , (1 6 ak 6 n, 1 6 bk 6 `, ck ∈ Z).

This defines sequences (ak), (bk), and (ck). For each t = 1, . . . , ` consider the infinite sequence
k(t)1 < k(t)2 < · · · , consisting of all integers k such that bk = t. Then it is easy to check that the
sequence

a
k(t)1
−nc

k(t)1
, a

k(t)2
−nc

k(t)2
, . . . (16)

is strictly decreasing and contains all negative integers except possibly a finite number of them.
Therefore there exists a unique integer mt such that the sequence

λ
(t)
1 = a

k(t)1
−nc

k(t)1
−mt , λ

(t)
2 = a

k(t)2
−nc

k(t)2
−mt −1, λ

(t)
3 = a

k(t)3
−nc

k(t)3
−mt −2, . . .

is a partition λ (t). Let λ ` = (λ (1), . . . ,λ (`)) be the `-tuple of partitions thus obtained, and let
m` = (m1, . . . ,m`). The second labelling is

∧ui = |λ `,m`〉. (17)
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Example 1 Let n = 2 and `= 3. Consider ∧ui given by the following sequence

i = (7, 6, 4, 3, 1,−1,−2,−3,−5,−6, . . .)

containing all integers 6−5. It differs only in finitely many places from the sequence

(3, 2, 1, 0,−1,−2,−3,−4,−5,−6, . . .).

Hence m = 3 and λ = (4,4,3,3,2,1,1,1).

For the second labelling, we have (use the picture in §2.3.2 (a))

u7 = w1⊗ v1⊗ z−1, u6 = w3⊗ v2⊗ z0, u4 = w2⊗ v2⊗ z0,
u3 = w2⊗ v1⊗ z0, u1 = w1⊗ v1⊗ z0, u−1 = w3⊗ v1⊗ z1,
u−2 = w2⊗ v2⊗ z1, u−3 = w2⊗ v1⊗ z1, u−5 = w1⊗ v1⊗ z1,

. . . . . . . . .

Hence the sequences in Eq. (16) are

3, 1, −1, −2, −3, . . . (t = 1),
2, 1, 0, −1, −2, . . . (t = 2),
2, −1, −2, −3, . . . (t = 3).

It follows that m3 = (1,2,0) and λ 3 = ((2,1), /0,(2)).

Exercise 6 Prove that m1+ · · ·+m` =m. Show that the map (λ ,m) 7→ (λ `,m`) is a bijection from
P×Z to P`×Z`.

2.3.4 The spaces F[m`]

Define Z`(m) = {(m1, . . . ,m`) ∈ Z` | m1 + · · ·+m` = m}. Given m` ∈ Z`(m), let F[m`] be the
subspace of Fm[`] spanned by all vectors of the standard basis of the form |λ `,m`〉 for some
`-tuple of partitions λ `. Using Exercise 6, we get the decomposition of vector spaces

Fm[`] =
⊕

m`∈Z`(m)

F[m`]. (18)

Moreover, since the action of ĝ on W ⊗V ⊗C[z±] involves only the last two factors and leaves
W untouched, it is easy to see that every summand F[m`] is stable under ĝ. Similarly, since the
action of the bosons bk involves only the factor C[z±1 , . . . ,z±r ] in U⊗r =W⊗r⊗V⊗r⊗C[z±1 , . . . ,z±r ],
each space F[m`] is stable under the Heisenberg algebra Hn`. Therefore Eq. (18) is in fact a
decomposition of U(ĝ)⊗U(Hn`)-modules.

The space F[m`] is called the level ` Fock space with multi-charge m`.

Remark 1 When ` = 1, F[m1] = Fm1 is irreducible as a U(ĝ)⊗U(Hn)-module (see Proposi-
tion 2). But for ` > 1, the spaces F[m`] are in general not irreducible as U(ĝ)⊗U(Hn`)-modules.
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2.3.5 `-tuples of Young diagrams

Let us generalize the combinatorial definitions of §2.2.2 to `-tuples of Young diagrams. Consider
an `-tuple of partitions λ ` = (λ (1), . . . ,λ (`)). We may represent it as an `-tuple of Young diagrams.
Given m` = (m1, . . . ,m`) ∈ Z`, we attach to each cell γ of these diagrams a content c(γ). If γ is
the cell of the diagram λ (d) in column number i and row number j then

c(γ) = md + i− j. (19)

For example let λ ` = ((2,1),(2,2),(3,2,1)) and m` = (2,0,3). The contents of the cells of
(m`,λ `) are

1
2 3 ,

−1 0
0 1 ,

1
2 3
3 4 5 .

The pair (m`,λ `) is called a charged `-tuple of Young diagrams. If i ∈ {0,1, . . . ,n− 1}, we say
that a cell γ of (m`,λ `) is an i-cell if its content c(γ) is congruent to i modulo n.

2.3.6 Action of the Chevalley generators on F[m`]

By unwinding the definition of the action of ĝ on F[m`], and the correspondence between the
labellings of the standard basis, one obtains the following simple combinatorial formulas for the
action of the Chevalley generators, which generalize those of §2.2.4 and §2.2.5.

Proposition 4 We have
fi|λ `,m`〉= ∑ |µ`

,m`〉, (20)

where the sum is over all µ
`

obtained from λ ` by adding an i-cell. Similarly,

ei|µ`
,m`〉= ∑ |λ `,m`〉, (21)

where the sum is over all λ ` obtained from µ
`

by removing an i-cell. 2

Exercise 7 Take n = 2, `= 3, m3 = (0,0,1), and λ 3 = ((1), (2), (1,1)). Check that

e0|λ 3,m3〉 = ( /0,(2),(1,1))+((1), (2), (1)),
e1|λ 3,m3〉 = ((1),(1),(1,1)),
f0|λ 3,m3〉 = ((1),(3),(1,1))+((1), (2), (2,1)),
f1|λ 3,m3〉 = ((2),(2),(1,1))+((1,1), (2), (1,1))+((1),(2,1),(1,1))+((1),(2),(1,1,1)).

Denote by rk (1 6 k 6 `) the residue of mk modulo n. It follows from Eq. (20), (21) that | /0,m`〉
is a primitive vector of F[m`], of weight

Λm`
=

`

∑
k=1

Λrk .

Exercise 8 Check it.

Hence we see that the submodule U(ĝ)| /0,m`〉 is isomorphic to the irreducible module V (Λm`
). In

particular, every integrable highest weight irreducible ĝ-module can be realized as a submodule of
a Fock space representation.

The formulas (20), (21) also show that the action of the Chevalley generators, and hence the
isomorphism type of F[m`], only depends on the residues modulo n of the components of the
multi-charge m`. Therefore we do not lose anything by assuming that m` ∈ {0,1, . . . ,n−1}`.

This is in sharp contrast with the quantum case, where it will be important to deal with multi-
charges m` ∈ Z`.
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3 Fock space representation of Uq(ŝln) : level 1

In this section we study a q-analogue of the constructions of §2.1 and §2.2.

3.1 The quantum affine algebra Uq(ŝln)

The enveloping algebra U(ĝ) has a q-analogue introduced by Drinfeld and Jimbo. This is the
algebra Uq(ĝ) over Q(q) with generators ei, fi, ti, t−1

i (0 6 i 6 n− 1) subject to the following
relations:

tit−1
i = t−1

i ti = 1, tit j = t jti

tie jt−1
i = qai j e j, ti f jt−1

i = q−ai j f j, ei f j− f jei = δi j
ti− t−1

i
q−q−1 ,

1−ai j

∑
k=0

(−1)k
[

1−ai j

k

]
q

e1−ai j−k
i e jek

i = 0 (i 6= j),

1−ai j

∑
k=0

(−1)k
[

1−ai j

k

]
q

f 1−ai j−k
i f j f k

i = 0 (i 6= j).

Here, A = [ai j]06i, j6n−1 is the Cartan matrix of type A(1)
n−1, and[

m
k

]
q
=

[m][m−1] · · · [m− k+1]
[k][k−1] · · · [1]

is the q-analogue of a binomial coefficient, where [k] = 1+q+ · · ·+qk−1.

Exercise 9 Check that K := t0t1 · · · tn−1 is central in Uq(ĝ).

The q-analogue of the “vector” representation V (z) of ĝ (see §2.1.3) is the Q(q)-vector space

U :=
⊕
k∈Z

Q(q)uk,

with the Uq(ĝ)-action given by

eiuk = δk≡i+1uk−1, fiuk = δk≡iuk+1, tiuk = qδk≡i−δk≡i+1uk.

Exercise 10 Check that this defines a representation of Uq(ĝ). Check that K acts on U by multi-
plication by q0 = 1, i.e.U is a level 0 representation of Uq(ĝ).

3.2 The tensor representations

The algebra Uq(ĝ) is a Hopf algebra with comultiplication ∆ given by

∆ fi = fi⊗1+ ti⊗ fi, ∆ei = ei⊗ t−1
i +1⊗ ei, ∆t±i = t±i ⊗ t±i . (22)

This allows to endow the tensor powers U⊗r with the structure of a Uq(ĝ)-module. Let us write
ui := ui1⊗·· ·⊗uir for i = (i1, . . . , ir) ∈ Zr. We then have

fk ui =
r

∑
j=1
i j≡k

q∑
j−1
l=1 (δil≡k−δil≡k+1) ui+ε j , (23)

ek ui =
r

∑
j=1

i j≡k+1

q−∑
r
l= j+1(δil≡k−δil≡k+1) ui−ε j , (24)
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where (ε j | 1 6 j 6 r) is the canonical basis of Zr.
The q-analogue of the action of Ŝr on V (z)⊗r given in §2.1.5 is an action of the affine Hecke

algebra.

3.3 The affine Hecke algebra Ĥr

Ĥr is the algebra over Q(q) generated by Ti (1 6 i 6 r−1) and invertible elements Yi (1 6 i 6 r)
subject to the relations

TiTi+1Ti = Ti+1TiTi+1, (25)

TiTj = TjTi, (i− j 6=±1), (26)

(Ti−q−1)(Ti +q) = 0, (27)

YiYj = YjYi, (28)

TiYj = YjTi for j 6= i, i+1, (29)

TiYiTi = Yi+1. (30)

The generators Ti replace the simple transpositions si of Sr, and the generators Yi replace the
generators zi of Ŝr. Because of Eq. (25) (26), for every w ∈ Sr written in reduced form as
w = si1 · · ·sik we can define Tw := Ti1 · · ·Tik . This does not depend on the choice of a reduced
expression. For i = (i1, . . . , ir) ∈ Zr we shall also write Y i := Y i1

1 · · ·Y ir
r .

There is a canonical involution x 7→ x of Ĥr defined as the unique Q-algebra automorphism
such that

q = q−1, Ti = T−1
i , Yi = T−1

w0
Yr−i+1Tw0 ,

where w0 is the longest element of Sr. We have the following more general formula, which can
be deduced from the commutation formulas.

Proposition 5 For s ∈Sr and i ∈ Zr, we have: (Y iTs) = T−1
w0

Y w0·iTw0s. 2

3.4 Action of Ĥr on U⊗r

Recall the fundamental domain Ar := {i ∈ Zr | 1 6 i1 6 i2 6 · · ·6 ir 6 n} of §2.1.5 for the action
of Ŝr. We write SrAr := {j∈Zr | 1 6 j1, j2, · · · , jr 6 n}, and we introduce an action of Ĥr on U⊗r

by requiring that

Yjui = uz ji, (1 6 j 6 r, i ∈ Zr), (31)

Tkuj =


uskj if jk < jk+1,

q−1uj if jk = jk+1,

uskj +(q−1−q)uj if jk > jk+1,

(1 6 k 6 r−1, j ∈SrAr). (32)

In these formulas, z ji and skj are as defined in §2.1.5.

Proposition 6 Eq. (31) (32) define an action of Ĥr on U⊗r which commutes with the action of
Uq(ĝ).
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Proof — First we explain how to calculate Tkui for an arbitrary i ∈ Zr. Write i = j− n l, with
j ∈SrAr and l ∈ Zr (this is always possible, in a unique way). Then by the first formula ui =Y luj.
Write

Y l = Y lk−lk+1
k

(
Y l1

1 · · ·Y
lk−1
k−1 (YkYk+1)

lk+1Y lk+2
k+2 · · ·Y

lr
r

)
.

Eq. (29) (30) show that Tk commutes with the second bracketed factor. Indeed, one has for example

TkYkYk+1 = Yk+1T−1
k Yk+1 = Yk+1YkTk.

Hence we are reduced to calculate TkY
lk−lk+1
k uj. For this, we use the following commutation rela-

tions, which are immediate consequences of Eq. (29) (30):

TkY l
k =


Y l

k+1Tk +(q−q−1)
l

∑
j=1

Y l− j
k Y j

k+1, (l > 0),

Y l
k+1Tk +(q−1−q)

−l

∑
j=1

Y− j
k Y j+l

k+1 , (l < 0).
(33)

These relations allow us to express Tkui as a linear combination of terms of the form Y mTkuj for
some m ∈ Zr and therefore to calculate Tkui.

Eq. (32) is copied from some classical formulas of Jimbo [J1] which give an action of the
finite Hecke algebra Hr = 〈Tk | 1 6 k 6 r−1〉 on the tensor power V⊗r of the vector representation
of Uq(sln). This action commutes with the action of Uq(sln) (quantum Schur-Weyl duality). The
above discussion shows that Eq. (31) allows to extend this action to an action of Ĥr on U⊗r.
Comparing Eq. (31) and Eq. (23) (24), we see easily that the action of Uq(ĝ) commutes with the
action of the Yj’s. The fact that the action of Tk commutes with e0 and f0 can be checked by a
direct calculation. 2

For i ∈ Ar, let Hi be the subalgebra of Ĥr generated by the the Tk’s such that ski = i. This is the
parabolic subalgebra attached to the parabolic subgroup Si. Denote by 1+i the one-dimensional
Hi-module on which Tk acts by multiplication by q−1. Then, Eq. (31) (32) show that the Ĥr-module
U⊗r decomposes as

U⊗r =
⊕
i∈Ar

Ĥrui,

and that
Ĥrui =

⊕
σ∈Ŝr/Si

Q(q)uσ i ∼= Ĥr⊗Hi 1+i .

Hence, U⊗r is a direct sum of a finite number of parabolic Ĥr-modules, parametrized by i ∈ Ar.
Each of these submodules inherits a bar involution, namely, the semi-linear map given by

q = q−1, xui = xui, (x ∈ Ĥr).

The following formula follows easily from Proposition 5.

Proposition 7 Let i ∈ Ar and j ∈ Ŝri. Then

uj = q−l(w0,i) T−1
w0

uw0j,

where w0,i is the longest element of Si. 2
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3.5 The q-deformed wedge-spaces

Let Ir := ∑
r−1
k=1 Im(Tk + qId) ⊂ U⊗r be the q-analogue of the subspace of “partially symmetric

tensors” (see §2.1.6). We define
∧r

qU :=U⊗r/Ir.

Let pr : U⊗r→∧r
qU be the natural projection. For i ∈ Zr, we put

∧q ui := q−l(w0)pr(ui).

We shall also write ∧q ui = ui1 ∧q ui2 ∧q · · ·∧q uir .
The next proposition gives a set of straightening rules to express any ∧q ui in terms of ∧q uk’s

with k1 > · · ·> kr.

Proposition 8 Let i∈Zr be such that ik < ik+1. Write ik+1 = ik+an+b, with a > 0 and 0 6 b < n.
Then

∧q ui = −ui1 ∧q · · ·∧q uik+1 ∧q uik ∧q · · ·∧q uir , if b = 0,

∧q ui = −q−1ui1 ∧q · · ·∧q uik+1 ∧q uik ∧q · · ·∧q uir , if a = 0,

∧q ui = −q−1ui1 ∧q · · ·∧q uik+1 ∧q uik ∧q · · ·∧q uir

−ui1 ∧q · · ·∧q uik+an∧q uik+1−an∧q · · ·∧q uir

−q−1ui1 ∧q · · ·∧q uik+1−an∧q uik+an∧q · · ·∧q uir , otherwise.

Proof — To simplify the notation, let us write l = ik and m= ik+1. Since the relations only involve
components k and k+1 we shall also use the shorthand notations

( j, p) := ui1⊗·· ·⊗uik−1⊗u j⊗up⊗uik+2⊗·· ·⊗uir ∈U⊗r,

| j, p〉 := ui1 ∧q · · ·∧q uik−1 ∧q u j ∧q up∧q uik+2 ∧q · · ·∧q uir ∈ ∧q
rU.

We shall use the easily checked fact that Y p
k +Y p

k+1 commutes with Tk for every p ∈ Z.
Suppose b = 0. It follows from Eq. (32) that Tk(l, l) = q−1(l, l). Hence (l, l) ∈ Im(Tk + q).

Since (Y−a
k +Y−a

k+1)(Tk +q) = (Tk +q)(Y−a
k +Y−a

k+1) we also have

(Y−a
k +Y−a

k+1)(l, l) = (m, l)+(l,m) ∈ Im(Tk +q),

and thus |l,m〉+ |m, l〉= 0.
Suppose a = 0. Then Tk(l,m) = (m, l) by Eq. (32), and

(Tk +q)(l,m) = (m, l)+q(l,m) ∈ Im(Tk +q),

which gives |l,m〉=−q−1|m, l〉.
Finally suppose that a,b > 0. By the previous case (m, l + an)+ q(l + an,m) ∈ Im(Tk + q).

Applying Y a
k +Y a

k+1 we get that

(m, l)+(m−an, l +an)+q(l,m)+q(l +an,m−an) ∈ Im(Tk +q),

which gives the third claim. 2
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Exercise 11 Take r = 2 and n = 2. Check that

u1∧q u4 =−q−1 u4∧q u1−u3∧q u2−q−1 u2∧q u3,

and that u2∧q u3 =−q−1 u3∧q u2. Thus

u1∧q u4 =−q−1 u4∧q u1 +(q−2−1)u3∧q u2.

Proposition 9 Let Zr
> = {i ∈ Zr | i1 > .. . > ir}. The set {∧q ui | i ∈ Zr

>} of ordered wedges is a
basis of the vector space ∧r

qU.

Proof — By Proposition 8, the ∧q ui with i1 > i2 > · · · > ir span ∧r
qU . To prove that they are

linearly independent, we consider the q-antisymmetrizer

αr := ∑
s∈Sr

(−q)l(s)−l(w0)Ts.

Using the relation

TsTk =

{
Tssk if l(ssk) = l(s)+1,

Tssk +(q−1−q)Ts if l(ssk)> l(s)−1,

it is easy to check that for every k we have αr(Tk +q) = 0. Suppose that ∑i ai (∧qui) = 0 for some
scalars ai ∈ Q(q). This means that ∑i ai ui ∈ Ir ⊂ kerαr, thus ∑i ai αrui = 0. We are therefore
reduced to prove that the tensors αrui with i1 > i2 > · · ·> ir are linearly independent. Since they
belong to ⊕j∈ZrZ[q,q−1]uj, we can specialize q to 1, and it is then classical that these specialized
tensors are linearly independent over Z. 2

3.6 The bar involution of ∧r
qU

Note that Ti +q = Ti + q, hence the bar involution of U⊗r preserves Ir and one can define a
semi-linear involution on ∧r

qU by

pr(u) = pr(u), (u ∈U⊗r).

Proposition 10 Let i ∈ Ar and j ∈ i · Ŝr. Then

∧q uj = (−1)l(w0)ql(w0)−l(w0,i) ∧q uw0j.

Proof — For any uj ∈U⊗r and k = 1, . . . ,r−1, we have

(q−1 +T−1
k )uj = (Tk +q)uj ∈Ir,

hence pr(T−1
k uj) = −q−1pr(uj). It follows that pr(T−1

w0
uj) = (−q)−l(w0)pr(uj). By Proposition 7

we have

∧q uj = ql(w0)pr(uj) = ql(w0)−l(w0,i) pr(T−1
w0

uw0j) = (−1)l(w0)ql(w0)−l(w0,i)∧q uw0j.

2

Proposition 10 allows to compute the expansion of ∧q uj on the basis of ordered wedges by
using the straightening algorithm of Proposition 8.
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Exercise 12 Take r = 2 and n = 2. Check that

u4∧q u1 = u4∧q u1 +(q−q−1)u3∧q u2.

For i ∈ Zr
> write ∧q ui = ∑j∈Zr

>
aij(q)(∧q uj). Using Proposition 10 and Proposition 8, we

easily see that the coefficients aij(q) ∈ Z[q,q−1] satisfy the following properties.

Proposition 11 (i) The coefficients aij(q) are invariant under translation of i and j by (1, . . . ,1).
Hence, setting ρ = (r− 1,r− 2, . . . ,1,0), it is enough to describe the aij(q) for which i−ρ and
j−ρ have non-negative components, i.e. for which i−ρ and j−ρ are partitions.
(ii) If aij(q) 6= 0 then i ∈ S̃rj. In particular, if i−ρ and j−ρ are partitions, they are partitions of
the same integer k.
(iii) The matrix Ak with entries the aij(q) for which i−ρ and j−ρ are partitions of k is lower
unitriangular if the columns and rows are indexed in decreasing lexicographic order. 2

Exercise 13 For n = 2 and r = 3, check that the matrices Ak for k = 2,3,4 are

(4,1,0) (3,2,0)

1 0
q−q−1 1

(5,1,0) (4,2,0) (3,2,1)

1 0 0
0 1 0

q−q−1 0 1

(6,1,0) (5,2,0) (4,3,0) (4,2,1)

1 0 0 0
q−q−1 1 0 0
q−2−1 q−q−1 1 0

0 q2−1 q−q−1 1

3.7 Canonical bases of ∧r
qU

Let L+ (resp. L−) be the Z[q] (resp. Z[q−1])-lattice in ∧r
qU with basis {∧q ui| i∈Zr

>}. The fact that
the matrix of the bar involution is unitriangular on the basis {∧q ui| i ∈ Zr

>} implies, by a classical
argument going back to Kazhdan and Lusztig, that

Theorem 2 There exist bases B+ = {G+
i | i ∈ Zr

>}, B− = {G−i | i ∈ Zr
>} of ∧r

qU characterized
by:

(i) G+
i = G+

i , G−i = G−i ,

(ii) G+
i ≡ ∧q ui mod qL+, G−i ≡ ∧q ui mod q−1L−.

Proof — Let us prove the existence of B+. Fix an integer k > 0, and consider the subspace Uk of
∧r

qU spanned by the ∧q ui with i−ρ a partition of k. Let Ik = {i1, i2, . . . , im} be the list of i ∈ Zr
>

such that i−ρ is a partition of k, arranged in decreasing lexicographic order. By Proposition 11
(i) (ii), it is enough to prove that there exists a basis {G+

i } of Uk indexed by Ik and satisfying the
two conditions of the theorem. By Proposition 11 (iii), ∧q uim = ∧q uim , so we can take Gim = uim .
We now argue by induction and suppose that for a certain r < m we have constructed vectors
G+

ir+1
,G+

ir+2
, . . . ,G+

im satisfying the conditions of the theorem. Moreover, we assume that

G+
ir+i

= ∧q uir+i + ∑
i< j6m−r

αi j(q) ∧q uir+ j , (i = 1, . . . ,m− r), (34)

for some coefficients αi j(q) ∈ Z[q]. In other words, we make the additional assumption that the
expansion of G+

ir+i
only involves vectors ∧quj with j 6 ir+i. We can therefore write, by solving a

linear system with unitriangular matrix,

∧q uir = ∧q uir + ∑
16 j6m−r

β j(q)G+
ir+ j

,
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where the coefficients β j(q) belong to Z[q,q−1]. By applying the bar involution to this equation
we get that β j(q−1) =−β j(q), hence β j(q) = γ j(q)− γ j(q−1) with γ j(q) ∈ qZ[q]. Now set

G+
ir = ∧q uir + ∑

16 j6m−r
γ j(q)G+

ir+ j
.

We have G+
ir ≡ ∧q uir mod qL+, G+

ir = G+
ir , and the expansion of G(λ r) on the standard basis is of

the form (34) as required, hence the existence of B+ follows by induction.
The proof of the existence of B− is similar.
To prove unicity, we show that if x ∈ qL+ is bar-invariant then x = 0. Otherwise write x =

∑i θi(q) ∧q ui, and let j be maximal such that θj(q) 6= 0. Then ∧q uj occurs in x with coefficient
θj(q−1), hence θj(q) = θj(q−1). But since θj(q) ∈ qZ[q] this is impossible. 2

Set
G+

j = ∑
i

cij(q)(∧q ui) , G−i = ∑
j

lij(−q−1)(∧q uj) .

Let Ck and Lk denote respectively the matrices with entries the coefficients cij(q) and lij(q) for
which i−ρ and j−ρ are partitions of k.

Exercise 14 For r = 3 and n = 2, check that we have

C4 =

(6,1,0) (5,2,0) (4,3,0) (4,2,1)

1 0 0 0
q 1 0 0
0 q 1 0
q q2 q 1

L4 =

(6,1,0) (5,2,0) (4,3,0) (4,2,1)

1 q q2 0
0 1 q 0
0 0 1 q
0 0 0 1

3.8 Action of Uq(ĝ) and Z(Ĥr) on ∧r
qU

Since the action of Uq(ĝ) on U⊗r commutes with the action of Ĥr, the subspace Ir is stable under
Uq(ĝ) and we obtain an induced action of Uq(ĝ) on ∧r

qU . The action on ∧q ui of the generators of
Uq(ŝln) is obtained by projecting (23), (24):

fk(∧q ui) =
r

∑
j=1
i j≡k

q∑
j−1
l=1 (δil≡k−δil≡k+1) (∧q ui+ε j), (35)

ek(∧q ui) =
r

∑
j=1

i j≡k+1

q−∑
r
l= j+1(δil≡k−δil≡k+1) (∧q ui−ε j). (36)

Note that if i∈Zr
> then i±ε j ∈Zr

> := {j∈Zr | j1 > · · ·> jr}. It follows that either∧q ui±ε j belongs
to the basis {∧q uj | j∈Zr

>}, or ∧q ui±ε j = 0. Hence, Eq. (35) (36) require no straightening relation
and are very simple to use in practice.

By a classical result of Bernstein (see [Lu1, Th. 8.1]), the center Z(Ĥr) of Ĥr is the algebra
of symmetric Laurent polynomials in the elements Yi. Clearly, Z(Ĥr) leaves invariant the submod-
ule Ir. It follows that Z(Ĥr) acts on ∧r

qU = U⊗r/Ir. This action can be computed via (31). In
particular Bk = ∑

r
i=1Y k

i acts by

Bk (∧q ui) =
r

∑
j=1
∧q ui−nkε j , (k ∈ Z∗). (37)
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Note that the right-hand side of (37) may involve terms ∧q uj with j 6∈ Zr
> which have to be ex-

pressed on the basis {∧q ui | i ∈ Zr
>} by repeated applications of the straightening rules.

Example 2 Take r = 4 and n = 2. We have

B−2 (∧q u(3,2,1,0)) = ∧q u(7,2,1,0)+∧q u(3,6,1,0)+∧q u(3,2,5,0)+∧q u(3,2,1,4).

By Proposition 8,

∧q u(3,6,1,0) =−q−1 ∧q u(6,3,1,0)+(q−2−1) ∧q u(5,4,1,0),

∧q u(3,2,5,0) =−q−1 ∧q u(3,5,2,0)+(q−2−1) ∧q u(3,4,3,0) = q−1 ∧q u(5,3,2,0),

∧q u(3,2,1,4) =−q−1 ∧q u(3,2,4,1)+(q−2−1) ∧q u(3,2,3,2) =−q−2 ∧q u(4,3,2,1),

which yields

B−2 (∧q u(3,2,1,0)) = ∧q u(7,2,1,0)−q−1 ∧q u(6,3,1,0)
+(q−2−1) ∧q u(5,4,1,0)+q−1 ∧q u(5,3,2,0)−q−2 ∧q u(4,3,2,1).

3.9 The Fock space

As in §2.2, we shall now construct the Fock space representation of Uq(ĝ) as the direct limit of
vector spaces

F = lim
→
∧r

qU

with respect to the linear maps ϕr,s : ∧r
qU →∧s

qU (r 6 s) defined by

ϕr,s(ui1 ∧q · · ·∧q uir) = ui1 ∧q · · ·∧q uir ∧q u−r ∧q u−r−1∧q · · ·∧q u−s+1.

By construction, each ∧q ui ∈ ∧r
qU has an image ϕr(∧q ui) ∈F which we think of as the infinite

q-wedge
ϕr(∧q ui) = ui1 ∧q · · ·∧q uir ∧q u−r ∧q u−r−1∧q · · ·∧q u−s+1∧q · · ·

Given a partition λ = (λi)i∈N, where we assume as before that λi = 0 for i large enough, we set

|λ 〉 := ui1 ∧q ui2 ∧q · · ·∧q uir ∧·· · ,

where ik = λk−k+1 (k > 1). It follows from Proposition 8 and Proposition 9 that {|λ 〉 | λ ∈P}
is a basis of F . As in §2.2.1, we will be using the natural grading of F given by

deg(|λ 〉) = ∑
k

λk.

We will sometimes write |λ | instead of deg(|λ 〉), and λ ` k if |λ |= k.

3.10 Action of Uq(ĝ) on F

As in §2.2.4 and §2.2.5, when r→ ∞ the compatible actions of Uq(ĝ) on the q-wedge spaces ∧r
qU

give an action on F , by setting

fiϕr(∧q ui) := ϕr+1 fiϕr,r+1(∧q ui), eiϕr(∧q ui) := q−δi≡r ϕr(ei(∧q ui)), (i ∈ Zr
>).

These formulas have a nice combinatorial description in terms of Young diagrams. Given two
partitions λ and µ such that the Young diagram of µ is obtained by adding an i-cell γ to the
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Young diagram of λ , let Ar
i (λ ,µ) (resp. Rr

i (λ ,µ)) be the number of addable i-cells of λ (resp. of
removable i-cells of λ ) situated to the right of γ (γ not included). Set

Nr
i (λ ,µ) = Ar

i (λ ,µ)−Rr
i (λ ,µ).

Then Eq. (35) gives
fi|λ 〉= ∑

µ

qNr
i (λ ,µ)|µ〉, (38)

where the sum is over all partitions µ obtained from λ by adding an i-cell. Similarly, Eq. (36)
gives

ei|µ〉= ∑
λ

q−Nl
i (α,β )|λ 〉, (39)

where the sum is over all partitions λ obtained from µ by removing an i-cell, and Nl
i (λ ,µ) is

defined as Nr
i (λ ,µ) but replacing right by left.

Exercise 15 Check that, for n = 2, we have

f0|3,1〉 = q−1 |3,2〉+ |3,1,1〉, f1|3,1〉 = |4,1〉,

e0|3,1〉 = q−2 |2,1〉, e1|3,1〉 = |3〉.

Exercise 16 Show that ti|λ 〉 = qNi(λ ) |λ 〉, where Ni(λ ) denotes the number of addable i-nodes
minus the number of removable i-nodes of λ . Deduce that the central element K = t0 · · · tn−1 acts
on F as q IdF , i.e. F is a level one representation of Uq(ĝ).

3.11 Action of the bosons on F

Let i ∈ Zr
>. It follows from the easily checked relations

u−s∧q u−r ∧q u−r−1∧q · · ·∧q u−s = 0, u−r ∧q u−r−1∧q · · ·∧q u−s∧q u−r = 0, (s > r > 0)

that the vector ϕs Bk ϕr,s(∧q ui) is independent of s for s > r large enough. Hence one can define
endomorphisms Bk of F by

Bkϕr(∧q ui) := ϕs Bk ϕr,s(∧q ui), (k ∈ Z∗, s� 1). (40)

By construction, these endomorphisms commute with the action of Uq(ĝ) on F . However they
no longer generate a commutative algebra. Using arguments very similar to those of the proof of
Proposition 1, Kashiwara, Miwa and Stern [KMS] showed that

[Bk,Bl] =

 k
1−q−2nk

1−q−2k if k =−l,

0 otherwise.
(41)

Hence the Bk generate a Heisenberg algebra that we shall denote by H .

Remark 2 The Bk’s are q-analogues of the endomorphisms βnk of §2.2.7. We do not have natural
q-analogues of the other bosons βl with l not a multiple of n. In the classical case, these βl belong
in fact to ĝ. (For example, β1 = ∑i ei.) They generate the principal Heisenberg subalgebra p of ĝ.
We lack a nice quantum analogue of this principal subalgebra.

Let C[H −] denote the commutative subalgebra of U(H ) generated by the Bk (k < 0). Let
V (Λ0) denote the irreducible highest weight Uq(ĝ)-module with highest weight Λ0. Using charac-
ters and arguing as in §2.2.8, we get the following analogue of Proposition 2.

Proposition 12 The Uq(ĝ)⊗U(H )-modules F and V (Λ0)⊗C[H −] are isomorphic. 2
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3.12 The bar involution of F

Using Proposition 8 we can check the following

Lemma 1 Let i ∈ Zr and let m > r. Assume that ik > −m (k = 1, . . . ,r) and ∑k(ik + k−1) 6 m.
Then

u−m∧q ui1 ∧q · · ·∧q uir ∧q u−r ∧q · · ·∧q u−m+1 =

(−1)mq−a(i) ui1 ∧q . . .∧q uir ∧q u−r ∧q · · ·∧q u−m+1∧q u−m,

where a(i) = ]{ j 6 r | i j 6≡ −m}+ ]{−r > j >−m+1 | j 6≡ −m}. 2

Repeated applications of this lemma together with Proposition 10 yield that if i satisfies the hy-
pothesis of the lemma and p > m, we have

ϕr,p(∧q ui) = ϕm,p(ϕr,m(∧q ui)).

Thus we can define a semi-linear involution on F by putting

ϕr(∧q ui) := ϕm(ϕr,m(∧q ui)), (i ∈ Zr, degϕr(∧q ui) = m, ik >−m for all k). (42)

In particular, for λ = (λ1, . . . ,λr) ∈P and s > ∑k λk, we have

|λ 〉= ϕs(uλ1 ∧q uλ2−1∧q · · ·∧q uλr−r+1∧q u−r ∧q · · ·∧q u−s+1).

The following proposition shows that the lowering operators of Uq(ĝ) and H commute with the
bar involution.

Proposition 13 For λ ∈P , 0 6 i 6 n−1 and k ∈ N∗, we have

fi |λ 〉= fi |λ 〉, B−k |λ 〉= B−k |λ 〉.

Proof — This readily follows from Eq. (38) (40) (42). (Note that the condition λi > −m in (42)
is preserved by the action of these lowering operators.) 2

Because of Proposition 12, it is easy to see that Proposition 13 and the normalization condition
| /0〉= | /0〉 characterize the bar involution of F . One can also develop a straightening free algorithm
based on Proposition 13 for computing the bar involution, which is much more efficient in practice
(see [L2]).

3.13 Canonical bases of F

Let ρr := (r−1,r−2, . . . ,1,0) ∈ Zr
>. For µ ∈P write

|µ〉= ∑
λ∈P

bλ µ(q) |λ 〉.

Then, for |λ |= |µ|6 r it follows from (42) that we have

bλ µ(q) = ai j(q)

where i = λ + ρr, j = µ + ρr, and the coefficients ai j(q) have been defined in § 3.6. Hence by
Proposition 11 the matrix

Bk := [bλ µ(q)], (λ ,µ ` k)

is unitriangular, and one can define canonical bases {G+
λ
| λ ∈P}, {G−

λ
| λ ∈P} of F charac-

terized by:

25



(i) G+
λ
= G+

λ
, G−

λ
= G−

λ
,

(ii) G+
λ
≡ |λ 〉 mod qL+

∞ , G−
λ
≡ |λ 〉 mod q−1L−∞ ,

where L+
∞ (resp. L−∞) is the Z[q]-submodule (resp. Z[q−1]-submodule) of F spanned by the ele-

ments |λ 〉 of the standard basis. Set

G+
µ = ∑

λ

dλ µ(q) |λ 〉 , G−
λ
= ∑

µ

eλ µ(−q−1) |µ〉 ,

and
Dk := [dλ µ(q)], Ek := [eλ µ(q)], (λ ,µ ` k).

Then, for r > k we have

dλ µ(q) = cλ+ρr,µ+ρr(q), eλ µ(q) = lλ+ρr,µ+ρr(q),

where the polynomials ci j(q) and li j(q) are those of §3.7.

Exercise 17 Check that

D4 =

(4) (3,1) (2,2) (2,1,1) (1,1,1,1)

1 0 0 0 0
q 1 0 0 0
0 q 1 0 0
q q2 q 1 0
q2 0 0 q 1

Compare with the matrix C4 of Exercise 14.

3.14 Crystal and global bases

Lusztig’s theory of canonical bases for quantum enveloping algebras was inspired by the Kazhdan-
Lusztig bases of Iwahori-Hecke algebras. Independently of Lusztig, Kashiwara gave a different
construction of canonical bases inspired by works of the Kyoto group on solvable models in statis-
tical mechanics. Since in the framework of statistical mechanics q represents the temperature, one
might expect that the representation theory becomes drastically simpler as the temperature tends
to absolute zero and the model crystallizes. This was first observed by Date, Jimbo and Miwa
for g = gln [DJM], and then generalized to an arbitrary symmetrizable Kac-Moody algebra g by
Kashiwara [Kas1].

In Kashiwara’s approach, the canonical basis of a Uq(g)-module M, called global basis of M,
is obtained in two steps. First, one constructs a combinatorial skeleton, called the crystal basis,
which one should think of as a “basis of M at q = 0”. The second step involves the same bar
involution of Uq(g) as in Lusztig’s construction, which induces a bar involution on every highest
weight irreducible Uq(g)-module. Kashiwara shows that for any irreducible integrable highest
weight Uq(g)-module M there is a unique Q(q)-basis of M which is bar-invariant and “coincides
with the crystal basis at q= 0” [Kas1]. This is the global basis of M, and it is identical to Lusztig’s
canonical basis of M, as shown by Grojnowski and Lusztig [GL].

By Proposition 13, the restriction of the bar involution to the submodule Uq(ĝ)| /0〉 ∼= V (Λ0)
coincides with the Kashiwara-Lusztig bar involution of the irreducible module V (Λ0). Moreover,
it was shown by Misra and Miwa [MM] that in the crystal limit q→ 0 the standard basis of F
tends to a crystal basis of F . The subset of the standard basis labelled by the set of n-regular
partitions, i.e. partitions λ with no part repeated more than n−1 times, turns out to give “at q = 0”
a basis of V (Λ0). This implies
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Proposition 14 The subset {G+(λ ) | λ is n-regular} coincides with Kashiwara’s global basis (or
Lusztig’s canonical basis) of the basic representation V (Λ0). 2

Thus we have obtained a global basis {G+(λ ) | λ ∈P} of the Fock space extending the global
basis of its highest irreducible Uq(ĝ)-submodule. In [Kas2], Kashiwara has generalized these
results to the more general Fock space representations of quantum affine algebras introduced in
[KMPY].

4 Decomposition numbers

4.1 The Lusztig character formula

Let Uv(glr) be the quantum enveloping algebra of glr. This is a Q(v)-algebra with generators
ei, fi, K j (1 6 i 6 r−1, 1 6 j 6 r) subject to the relations

K jK−1
j = K−1

j K j = 1, K jKl = KlK j

K jeiK−1
j = vδi j−δ j,i+1e j, K j fiK−1

j = v−δi j+δ j,i+1 f j, ei f j− e j fi = δi j
KiK−1

i+1−K−1
i Ki+1

v− v−1 ,

1−ai j

∑
k=0

(−1)k
[

1−ai j

k

]
v
e1−ai j−k

i e jek
i = 0 (i 6= j),

1−ai j

∑
k=0

(−1)k
[

1−ai j

k

]
v

f 1−ai j−k
i f j f k

i = 0 (i 6= j).

Here, A = [ai j]16i, j6r−1 is the Cartan matrix of type Ar−1. Let Uv,Z(glr) denote the Z[v,v−1]-
subalgebra generated by the elements

e(k)i :=
ek

i
[k]!

, f (k)i :=
f k
i

[k]!
, K±j , (k ∈ N).

Let ζ ∈ C be such that ζ 2 is a primitive nth root of 1. One defines Uζ (glr) :=Uv,Z(glr)⊗Z[v,v−1]C
where Z[v,v−1] acts on C by v 7→ ζ [Lu2, Lu3].

Let λ ∈ Zr
>. There is a unique finite-dimensional Uv(glr)-module (of type 1) Wv(λ ) with

highest weight λ . Its character is the same as for glr and is given by Weyl’s character formula.
Fix a highest weight vector uλ ∈Wv(λ ) and denote by Wv,Z(λ ) the Uv,Z(glr)-submodule of Wv(λ )
generated by uλ . Finally, put

Wζ (λ ) :=Wv,Z(λ )⊗Z[v,v−1]C.

This is a Uζ (glr)-module called a Weyl module [Lu2]. By definition chWζ (λ ) = chWv(λ ). There
is a unique simple quotient of Wζ (λ ) denoted by L(λ ). Its character is given in terms of the
characters of the Weyl modules by the so-called Lusztig conjecture [Lu3] (now a theorem of
Kazhdan-Lusztig [KL] and Kashiwara-Tanisaki [KT]).

To state it, recall the action of Ŝr on Zr introduced in §2.1.5. Namely, sk (1 6 k 6 r− 1)
acts by switching the kth and (k+1)th components of i, and z j (1 6 j 6 r) by translating the jth
component by −n.
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Theorem 3 (Kazhdan-Lusztig [KL], Kashiwara-Tanisaki [KT]) Let ρ =(r−1,r−2, . . . ,1,0).
We have

chL(λ ) = ∑
µ

P−
µ+ρ,λ+ρ

(−1) chWζ (µ), (43)

where the sum is over all µ ∈ Zr
> such that µ +ρ belongs to the Ŝr-orbit of λ +ρ .

In this formula, the coefficients P−
µ+ρ,λ+ρ

(−1) are values at q = −1 of some parabolic Kazhdan-

Lusztig polynomials for Ŝr, whose definition will be recalled in the next section.

Example 3 Take r = 3, n= 2 and λ =(4,0,0). Then λ +ρ =(6,1,0). The only dominant weights
µ ∈ Z3

> such that P−
µ+ρ,(6,1,0)(q) 6= 0 are (4,0,0), (3,1,0), and (2,2,0), and one can calculate

P(6,1,0),(6,1,0)(q) = 1, P(5,2,0),(6,1,0)(q) = q, P(4,3,0),(6,1,0)(q) = q2.

It follows that the character of L(4,0,0) for ζ 2 =−1 is given by

chL(4,0,0) = chWζ (4,0,0)− chWζ (3,1,0)+ chWζ (2,2,0).

4.2 Parabolic Kazhdan-Lusztig polynomials

The parabolic versions of the Kazhdan-Lusztig polynomials have been introduced by Deodhar
[D]. We refer to [So] for a more detailed exposition.

Up to now, we have been regarding Ŝr as the semidirect product Sr nZr, and we have used
the corresponding Bernstein presentation of Ĥr. To introduce the Kazhdan-Lusztig polynomials,
we need to shift our point of view and consider Ŝr as an extended Coxeter group, with generators
s0,s1, . . . ,sr−1,τ subject to the relations

sisi+1si = si+1sisi+1, (44)

sis j = s jsi, (i− j 6=±1), (45)

s2
i = 1, (46)

τsi = si+1τ. (47)

Here the indices i = 0,1, . . .r−1 are taken modulo r. The new generators s0 and τ are expressed
in terms of the old ones by

τ = s1s2 · · ·sr−1zr, (48)

s0 = sr−1sr−2 · · ·s2s1s2 · · ·sr−1z−1
1 zr. (49)

The subgroup S̃r generated by s0,s1, . . . ,sr−1 is a Coxeter group of type Ãr−1, and therefore has an
associated Bruhat order, and a length function. But Ŝr is not a Coxeter group. However, one can
extend the Bruhat order and the length function of S̃r to Ŝr as follows. Let w = τkσ ,w′ = τmσ ′

with k,m ∈ Z, σ ,σ ′ ∈ S̃r. We say that w < w′ if and only if k = m and σ < σ ′, and we put
l(w) := l(σ).

The Hecke algebra Ĥr has the following alternative description. This is the algebra over Q(q)
with basis Tw (w ∈ Ŝr) and multiplication defined by

TwTw′ = Tww′ if l(ww′) = l(w)+ l(w′), (50)

(Tsi−q−1)(Tsi +q) = 0, (0 6 i 6 r−1). (51)
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The generators used in §3.3 are Ti = Tsi (1 6 i 6 r−1) and Yj = Tz j (1 6 j 6 r). We can now also
use T0 = Ts0 and Tτ , which we shall simply denote by τ . This gives another presentation:

TiTi+1Ti = Ti+1TiTi+1, (52)

TiTj = TjTi, (i− j 6=±1), (53)

(Ti−q−1)(Ti +q) = 0, (54)

τTi = Ti+1τ, (55)

where now the subscripts i = 0,1, . . . ,r−1 are understood modulo r.
For the action of Ŝr on Zr defined in §2.1.5, we have

s0 · i = (ir−n, i2, . . . , ir−1, i1 +n), τ · i = (ir−n, i1, i2, . . . , ir−1).

We shall now define another basis (vi | i ∈ Zr) of U⊗r. Put vi = ui if i ∈ Ar. Otherwise, there is a
unique j ∈ Ar such that i belongs to the Ŝr-orbit of j, and a unique element w = w(i) of minimal
length such that i = w · j. Then put vi = Twvj = Twuj. This new basis is better adapted to the
Coxeter-type presentation of Ĥr. Indeed, putting i0 = ir−n, it is not difficult to see that

τvi = vi·τ , (i ∈ Zr), (56)

Tkvi =


vsk·i if ik < ik+1,

q−1vi if ik = ik+1,

vsk·i +(q−1−q)vi if ik > ik+1,

(0 6 k 6 r−1, i ∈ Zr). (57)

Lemma 2 For i ∈ Zr
>, we have vi = ui.

Proof — Write i = zks · j with j ∈ Ar, k ∈ Zr, and s ∈ Sr. It is easy to see that the assumption
i ∈ Zr

> forces k ∈ Zr
6. This in turn implies that l(zks) = l(zk)+ l(s), hence TzkTs = Tzks. Now for

k ∈ Zr
6 one also has Tzk = Y k, so vi = Tzksuj = Y k(Tsuj) = Y kus·j = ui. 2

Recall the decomposition U⊗r =⊕i∈Ar Ĥrui of §3.4. For every i ∈ Ar, the Ĥr-submodule

Ĥrui =
⊕

j∈Ŝri

Q(q)uj =
⊕

j∈Ŝri

Q(q)vj

is a parabolic module, and therefore has two Kazhdan-Lusztig bases defined as follows. Consider
the two lattices

L +
i =

⊕
j∈Ŝri

Z[q]vj, L −
i =

⊕
j∈Ŝri

Z[q−1]vj.

By work of Deodhar [D], there are two bases C+
j , C−j (j ∈ Ŝri) of Ĥrui characterized by

C+
j =C+

j , C−j =C−j , C+
j ≡ vj mod qL +

i , C−j ≡ vj mod q−1L −
i ,

where x 7→ x denotes the bar involution of Ĥrui defined in §3.4. By collecting them together for
all i ∈ Ar, we obtain two bases C+

j , C−j (j ∈ Zr) of U⊗r called the Kazhdan-Lusztig bases. The
parabolic Kazhdan-Lusztig polynomials are then defined via the expansions

C+
j = ∑

k∈Ŝri

P+
k,j(q)vk, C−j = ∑

k∈Ŝri

P−k,j(−q−1)vk.

They can be calculated inductively, as illustrated by the next example.

29



Example 4 Let us take r = 3, n = 2 and compute C−j for j = (0,6,1). We have (0,6,1) ∈ Ŝ3i
with i = (1,2,2) ∈ A3. So we can start with C−(1,2,2) = v(1,2,2). Next we calculate that

(0,6,1) = s2s0s1s2s0τ · (1,2,2).

Clearly
C−(2,2,3) =C−

τ(1,2,2) = v(2,2,3).

Now note that for every i = 0,1,2 we have Ti−q−1 = Ti− q−1, hence applying Ti− q−1 to a
Kazhdan-Lusztig element C−k gives a bar-invariant element. Then, setting for short t = q−1, we
compute successively

(T0− t)v(2,2,3) = v(1,2,4)− tv(2,2,3) =C−(1,2,4),

(T2− t)C−(1,2,4) = v(1,4,2)− tv(1,2,4)− tv(2,3,2)+ t2v(2,2,3) =C−(1,4,2),

(T1− t)C−(1,4,2) = v(4,1,2)− tv(1,4,2)− tv(2,1,4)+ t2v(1,2,4)− tv(3,2,2)+ t2v(2,3,2) =C−(4,1,2),

(T0− t)C−(4,1,2) = v(0,1,6)− tv(4,1,2)− tv(0,4,3)+ t2v(1,4,2)+ t2v(2,2,3)− tv(1,2,4)

− tv(0,2,5)+ t2v(3,2,2)+ t2v(0,3,4)− t3v(2,3,2) =C−(0,1,6),

(T2− t)C−(0,1,6) = v(0,6,1)− tv(0,1,6)− tv(4,2,1)+ t2v(4,1,2)− tv(0,3,4)

+v(0,4,3)+2t2v(1,2,4)−2tv(1,4,2)+2t2v(2,3,2)−2t3v(2,2,3)
−tv(0,5,2)+ t2v(0,2,5)+ t2v(0,4,3)− t3v(0,3,4).

We see that this last vector v≡ v(0,6,1)+ v(0,4,3) mod tL −
i . Thus, subtracting

C−(0,4,3) = v(0,4,3)− tv(0,3,4)− tv(1,4,2)+ t2v(1,2,4)+ t2v(2,3,2)− t3v(2,2,3),

which we can assume already calculated by induction, we get

C−(0,6,1) = v(0,6,1)− tv(0,1,6)− tv(4,2,1)+ t2v(4,1,2)+ t2v(1,2,4)− tv(1,4,2)

+t2v(2,3,2)− t3v(2,2,3)− tv(0,5,2)+ t2v(0,2,5)+ t2v(0,4,3)− t3v(0,3,4).

4.3 Categorification of ∧rU

We can now relate the canonical bases of ∧r
qU to the representation theory of Uζ (glr). Recall the

polynomials lij(q) defined in §3.7.

Theorem 4 (Varagnolo-Vasserot [VV]) For i, j ∈ Zr
>, we have li,j = P−j,i .

Proof — Take i ∈ Zr
> and consider the element Di := pr(C−i ) ∈ ∧r

qU . Then Di = Di by definition
of the bar involution on ∧r

qU . Note that if j ∈ Zr
> then pr(vj) = pr(uj) = ql(w0)∧q uj by Lemma 2.

Otherwise, if jk < jk+1 then pr(vj) = −q−1pr(vsk·j), as follows immediately from the definition
of pr and Eq. (57). Therefore if k ∈ Zr

> and s ∈Sr we have pr(vs·k) = (−q)−l(s)ql(w0)∧q uk. We
now use the following simple observation (see [So, Remark 3.2.4]): if ik > ik+1 and jk > jk+1 then
P−sk·j,i(−q−1) =−q−1P−j,i(−q−1). Since i ∈ Zr

>, this implies that

Di = [r]! ∑
j∈Zr

>

P−j,i(−q−1) ∧q uj,
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where
[r]! = [r][r−1] · · · [1] = ql(w0) ∑

w∈Sr

q−2l(w)

is bar-invariant. Hence (1/[r]!)Di is bar-invariant and congruent to ∧q ui modulo q−1L−. Thus
Di = [r]!G−i and the theorem is proved. 2

This theorem has the following nice reformulation. Define a Z-linear map ι from the Grothen-
dieck group of finite-dimensional representations of Uζ (glr) to ∧rU by

ι [Wζ (λ )] = ∧uλ+ρ , (λ ∈ Zr
>).

Then comparing Theorem 4 and the Lusztig character formula (43) we see that ι [L(λ )] is equal
to the specialization at q = 1 of G−

λ+ρ
. In other words, using a more fancy language, the cate-

gory of finite-dimensional representations of Uζ (glr) is a categorification of the vector space ∧rU
endowed with the specialization at q = 1 of the canonical basis G−i (i ∈ Zr

>).

Remark 3 The above proof of the relation between the canonical basis G−i (i ∈ Zr
>) and the

simple Uζ (glr)-modules relies on Lusztig’s character formula, whose proof requires a lot of work.
There are now two other proofs which do not use Lusztig’s formula, and therefore provide an inde-
pendent proof of this formula (for type A). The first one is due to Varagnolo-Vasserot-Schiffmann
[VV, Sc]. It relies on a geometric construction of the affine v-Schur algebra. The second one [L1]
uses Ariki’s theorem [A1]. Ariki’s theorem gives a proof of the LLT-conjecture [LLT], which
relates the simple modules of the finite Hecke algebras Hr(ζ ) with a subset of the canonical basis
G+

i (i ∈ Zr
>). In [L1] it is proved that Ariki’s theorem implies the Lusztig character formula (for

type A).

4.4 Categorification of the Fock space

We first describe an interesting symmetry of the bar involution of the Fock space F . Define a
scalar product on F by

〈|λ 〉 , |µ〉〉= δλ µ , (λ ,µ ∈P).

Define also a semi-linear involution v 7→ v′ on F by setting

q′ = q−1, |λ 〉′ = |λ ′〉,

where λ ′ denotes the partition conjugate to λ ∈P (that is, the rows of the Young diagram of λ ′

are the columns of the Young diagram of λ ). One can show [LT2, Th. 7.11] that

〈u , v〉= 〈u′ , v′〉, (u,v ∈F ). (58)

Let {G∗
λ
} denote the basis of F adjoint to {G+

λ
} for the above scalar product. In other words,

〈G∗
λ
, G+

µ 〉= δλ ,µ . Write

G∗
λ
= ∑

β

gλ ,µ(q) |λ 〉, and Gk := [gλ ,µ(q)], (λ ,µ ` k).

Since {|λ 〉} is an orthonormal basis, we have Gk = D−1
k , a unitriangular matrix with off-diagonal

entries in qZ[q].

Proposition 15 For λ ∈P one has (G∗
λ
)′ = G−

λ ′ .
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Proof — We have to prove that (G∗
λ
)′ satisfies the two defining properties of G−

λ ′ , namely

(G∗
λ
)′ ≡ |λ ′〉 mod q−1L−∞ , (G∗

λ
)′ = (G∗

λ
)′.

Since Gk is unitriangular with off-diagonal entries in qZ[q], G∗
λ
≡ |λ 〉 mod qL+

∞ , which implies
that (G∗

λ
)′ ≡ |λ ′〉 mod q−1L−∞ . The second property is equivalent to

〈(G∗
λ
)′ , (G+

µ )
′〉= δλ ,µ , (λ , µ ` k),

because {(G∗
λ
)′} is the basis adjoint to {(G+

µ )
′}. Now, by Eq. (58),

〈(G∗
λ
)′ , (G+

µ )
′〉= 〈G∗

λ
, G+

µ 〉= 〈G∗λ , G+
µ 〉= δλ ,µ .

2

Proposition 15 amounts to say that gλ µ(q) = eλ ′µ ′(q), or in other words that

∑
γ`k

eλ ′γ ′(−q)dγµ(q) = δλ µ , (λ ,µ ` k).

In particular, setting q = 1 we get

∑
γ`k

eλ ′γ ′(−1)dγµ(1) = δλ µ , (λ ,µ ` k).

Since by Theorem 4, we have that the coefficient of chWζ (µ) in chL(λ ) is equal to

lλ+ρ,µ+ρ(−1) = eλ µ(−1),

it follows that
dλ µ(1) = [Wζ (λ

′) : L(µ ′)]

is the multiplicity of L(µ ′) as a composition factor of the Weyl module Wζ (λ
′). Thus the values at

q = 1 of the coefficients dλ µ(q) of G+
µ are decomposition numbers for Uζ (glk), as was conjectured

in [LT1].
It is more natural to state these results in terms of the v-Schur algebras Sk(ξ ). Here ξ = ζ 2

and, by definition, Sk(ξ ) is the image of Uζ (glk) in the endomorphism ring of the kth tensor power
of its defining k-dimensional representation. Thus, the category of Sk(ξ )-modules is nothing else
than the category of polynomial representations of degree k of Uζ (glk). The algebra Sk(ξ ) is
quasi-hereditary, and its simple objects can be identified with the L(λ ) for λ ` k. (For a nice
exposition of the theory of quasi-hereditary algebras and their tilting modules, we refer to [DR]).
Consider the category

C =
⊕
k∈N

modSk(ξ ).

This can be regarded as a categorification of the Fock space F , with the G−
λ

being the classes of
the simple objects L(λ ) of C , and the |λ 〉 the classes of the standard objects Wζ (λ ).

Moreover, let T (λ ) denote the indecomposable tilting Sk(ξ )-module with highest weight λ .
By [DPS, Prop. 8.2] which states that

[Wζ (λ
′) : L(µ ′)] = [T (µ) : Wζ (λ )],

we see that [T (µ) : Wζ (λ )] = dλ ,µ(1), and the G+(λ ) are the classes of the indecomposable tilting
objects T (λ ).
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5 Fock space representations of Uq(ŝln) : higher level

In this section we sketch following Uglov [TU, U1, U2] a q-analogue of the constructions of §2.3.
We fix an integer `> 1.

5.1 Action on U

The q-analogue of the action of ĝ on V (z) used in §2.3.2 (a) is the Q(q)-vector space

U :=
⊕
k∈Z

Q(q)uk,

with the Uq(ĝ)-action given by

eiuk = δk≡i+1 uk−1, fiuk = δk≡i uk+1, (1 6 i 6 n−1),
e0uk = δk≡1 uk−1−(`−1)n, f0uk = δk≡0 uk+1+(`−1)n,

tiuk = qδk≡i−δk≡i+1 uk, (0 6 i 6 n−1).

Exercise 18 Check that this defines a level 0 representation of Uq(ĝ).

We consider again

V =
n⊕

i=1

Q(q)vi,

and also

W =
⊕̀
j=1

Q(q)w j.

Then we can identify W ⊗V ⊗Q(q)[z,z−1] with U by

w j⊗ vi⊗ zk ≡ ui+( j−1)n−`nk, (1 6 i 6 n, 1 6 j 6 `, k ∈ Z). (59)

The above action can be rewritten as

ei(wd⊗ vc⊗ zm) = δ(c≡i+1 mod n) wd⊗ vc−1⊗ zm+δi,0 , (0 6 i 6 n−1),

fi(wd⊗ vc⊗ zm) = δ(c≡i mod n) wd⊗ vc+1⊗ zm−δi,0 , (0 6 i 6 n−1),

ti(wd⊗ vc⊗ zm) = q(δc≡i mod n−δc≡i+1 mod n) wd⊗ vc⊗ zm, (0 6 i 6 n−1).

Here it is understood that v0 = vn and vn+1 = v1.
Put p :=−q−1 and consider the quantum affine algebra Up(g̃) =Up(ŝl`). To avoid confusion,

we denote its generators by ėi, ḟi, ṫi (0 6 i 6 `−1). It acts on U by

ėi(wd⊗ vc⊗ zm) = δ(d≡i+1 mod `) wd−1⊗ vc⊗ zm+δi,0 , (0 6 i 6 `−1),

ḟi(wd⊗ vc⊗ zm) = δ(d≡i mod `) wd+1⊗ vc⊗ zm−δi,0 , (0 6 i 6 `−1),

ṫi(wd⊗ vc⊗ zm) = p(δd≡i mod `−δd≡i+1 mod `) wd⊗ vc⊗ zm, (0 6 i 6 `−1).

Here it is understood that w0 = w` and w`+1 = w1. Clearly, the actions of Uq(ĝ) and Up(g̃) com-
mute with each other.
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5.2 The tensor spaces U⊗r

Let r > 1. Using the comultiplication ∆ of (22) we get a level 0 action of Uq(ĝ) on U⊗r. Similarly,
we endow U⊗r with a level 0 action of Up(g̃) using the comultiplication

∆ ḟi = ḟi⊗1+ ṫi⊗ ḟi, ∆ėi = ėi⊗ ṫ−1
i +1⊗ ėi, ∆ṫ±i = ṫ±i ⊗ ṫ±i . (60)

We have endowed V⊗r⊗Q(q)[z±1 , . . . ,z
±
r ] with a left action of Ĥr in §3.4. We can also define

a right action of Hr on W⊗r by

wiTk =


−wsk·i if ik < ik+1,

(−q)wi if ik = ik+1,

−wsk·i +(q−1−q)wi if ik > ik+1,

(1 6 k 6 r−1).

Here, for i = (i1, . . . , i`) ∈ [1, `]r we write wi = wi1 ⊗·· ·⊗wi` ∈W⊗r. This is a q-analogue of the
right action of Sr on W⊗r given in §2.3.2 (b).

5.3 The q-wedge spaces ∧r
qU

Following Uglov, we can now define

∧r
qU :=W⊗r⊗Hr

(
V⊗r⊗Q(q)[z±1 , . . . ,z

±
r ]
)
. (61)

Note that this is indeed a q-analogue of ∧rU , by Proposition 3. As in the case `= 1, the q-wedge
space ∧r

qU is endowed by construction with a basis of normally ordered q-wedges {∧q ui | i ∈Zr}.
However, the straightening relations are now significantly more complicated, and they depend
both on n and `. We shall not reproduce them here (see e.g. [U1, §2.1]).

5.4 The Fock spaces F[m`]

Passing to the limit r→ ∞, we get for every m ∈ Z a Q(q)-vector space Fm[`] with a standard
basis consisting of all infinite q-wedges

∧qui := ui1 ∧q ui2 ∧q · · ·∧q uir ∧q · · · , (i = (i1 > i2 > · · ·> ir > · · ·) ∈ ZN∗),

which coincide, except for finitely many indices, with

| /0m〉 := um∧q um−1∧q · · ·∧q um−r ∧q um−r−1∧q · · ·

We can label the elements of this basis by partitions in exactly the same way as in §2.3.3. We shall
write, with the same notation

∧qui = |λ ,m〉= |λ `,m`〉.

We can then define F[m`] as the subspace of Fm[`] spanned by all vectors of the standard basis
of the form |λ `,m`〉 for some `-tuple of partitions λ `. This is the q-deformed Fock space of level
` with multi-charge m`. Indeed, it is a level ` representation of Uq(ĝ). The isomorphism type of
F[m`] as a Uq(ĝ)-module depends only on the (unordered) list of residues modulo n of the compo-
nents of m`. There are some nice q-analogues of the combinatorial formulas of Proposition 4 for
the action of the Chevalley generators on the standard basis (see e.g. [U2, §2.1]).

The Fock space F[m`] is also endowed with the action of bosons Bk given by

Bk (∧q ui) = ∑
j>1
∧q ui−n`kε j , (k ∈ Z∗). (62)
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They generate a Heisenberg algebra [U2]:

[Bk,Bm] = δk,−m k
(1−q−2kn)(1−q−2k`)

(1−q−2k)2 , (k,m ∈ Z∗).

5.5 The canonical bases of F[m`]

One can define a bar involution on Fm[`], either by flipping q-wedges (as in Prop. 10) or by
using the bar involution of Ĥr. It is expressed by a unitriangular matrix on the standard ba-
sis, and it preserves the subspaces F[m`]. This allows to introduce, as in §3.13, canonical bases
{G(λ `,m`)

+| λ ` ∈P`} and {G(λ `,m`)
−| λ ` ∈P`} of F[m`] characterized by:

(i) G(λ `,m`)+ = G(λ `,m`)
+, G(λ `,m`)− = G(λ `,m`)

−,

(ii) G(λ `,m`)
+≡ |λ `,m`〉 mod qL+[m`], G(λ `,m`)

−≡ |λ `,m`〉 mod q−1L−[m`],

where L+[m`] (resp. L−[m`]) is the Z[q]-submodule (resp. Z[q−1]-submodule) of F[m`] spanned
by the elements of the standard basis.

We denote by ∆
±
k [m`] the transition matrix from the standard basis to {G(λ `,m`)

±| λ ` ∈P`}
in the degree k component of F[m`]. Uglov [U2, Th. 3.26] has given an expression of the entries of
∆
±
k [m`] in terms of parabolic Kazhdan-Lusztig polynomials for S̃r which generalizes Theorem 4.

5.6 Comparison of bases

Let m` = (m1, . . . ,m`) and m′` = (m′1, . . . ,m
′
`) be two multi-charges such that

mi ≡ m′i mod n, (1 6 i 6 `). (63)

We have seen that F[m`] and F[m′`] are isomorphic representations of Uq(ĝ), but the formulas for
the action of the Chevalley generators on the standard basis of these two Fock spaces are not the
same, and the matrices ∆

±
k [m`] and ∆

±
k [m

′
`] are in general different. It is a very interesting problem

to determine under which additional conditions on m` and m′` we have an equality. A first result in
this direction was proved by Yvonne [Y1]. He showed that if m` and m′` are sufficiently dominant,
i.e. if

m1� m2� ·· · � m`, m′1� m′2� ··· � m′`, (64)

then ∆
±
k [m`] = ∆

±
k [m

′
`]. The proof is based on the fact that the Fock spaces F[m`] and F[m′`] are

weight spaces of Fm[`] for the action of Up(ŝl`) [U2, §4.2]. When the condition (63) is fulfilled,
the corresponding ŝl`-weights Λ and Λ′ are in the same orbit of the Weyl group S̃`. If moreover
(64) holds then Λ′ = sit · · ·si1(Λ) and for every k = 1, . . . , t the weight sik · · ·si1(Λ) is extremal on
its ik-string. Yvonne then proves that the canonical basis is “preserved” under such reflexions.

5.7 Cyclotomic v-Schur algebras

Dipper, James and Mathas [DiJaMa] have introduced some `-cyclotomic analogues of the Schur
algebras Sk(ξ ) of §4.4. These are quasi-hereditary algebras Sk(ξ ,s`) depending on an `-tuple
of parameters s` = (s1, . . . ,s`) ∈ (Z/nZ)`. (Here, as in §4.4, we assume that ξ is a primitive nth
root of 1.) The simple Sk(ξ ,s`)-modules and the standard Sk(ξ ,s`)-modules are labelled by all
`-tuples of partitions λ ` = (λ (1), . . . ,λ (`)) with ∑i |λ (i)|= k. James and Mathas [JM] have proved
a Jantzen-type sum formula for the multiplicities of simple modules in the layers of the Jantzen
filtration of a standard module. This allows to calculate the decomposition matrix of Sk(ξ ,s`) in
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small rank k, but there is no known algorithm or Kazhdan-Lusztig type formula for calculating
these decomposition numbers in general.

Yvonne [Y2] has conjectured that the decomposition matrix of Sk(ξ ,s`) is equal to the eval-
uation at q = 1 of the matrix ∆

±
k [m`] for any multi-charge m` satisfying

mi ≡ si mod n, (i = 1, . . . , `) and m1� m2� ··· � m`.

In fact, he conjectures more generally that the matrix ∆
±
k [m`] without evaluation of q is equal to

the matrix of graded decomposition numbers given by the Jantzen filtration. He then proves that
this last conjecture is compatible with the James-Mathas sum formula, thus obtaining a strong
support for his conjectures.

Rouquier [R] conjectures that all the matrices ∆
±
k [m`] (without any dominance assumption

on m`) should have a similar interpretation in terms of some more general cyclotomic v-Schur
algebras coming from rational Cherednik algebras via the Knizhnik-Zamolodchikov functor.

6 Notes

§2 : The main references are [K], [F1], [F2]. See [MJD] for the relations with soliton equations.

§3 : The main references are [KMS], [LT1], [LT2], [VV]. See [A2] for a more combinatorial
presentation following [MM]. See [L2] for the bosonic side and the connections with symmetric
functions. For a beautiful introduction to quantum groups from the viewpoint of mathematical
physics, see [J2]. Kashiwara has written several surveys of the theory of crystal bases [Kas3,
Kas4].

§4 : See [M] for the q-Schur algebras, their representation theory and decomposition numbers. See
[GS] for a recent interpretation of the canonical basis {G−(λ )} of F in terms of characteristic
cycles of modules over the rational Cherednik algebras of type A.

§5 : The main references are [U1], [U2], [TU].
The first construction of F[m`] (for multi-charges m` satisfying 0 6 m1 6 · · · 6 m` 6 n− 1)

was given in [JMMO], with emphasis on combinatorial formulas and crystal bases. See also
[FLOTW]. By changing the multi-charge m` (as in §5.6) we obtain several multi-partition de-
scriptions of the crystal graph of an irreducible Uq(ĝ)-module. By Ariki’s theorem [A1], they
correspond to different parametrizations of the simple modules of the Ariki-Koike algebras. The
meaning of these parametrizations was explained in [Jac].

Fock space representations for quantum affine algebras Uq(ĝ) of classical type have been con-
structed in [KMPY], using the theory of perfect crystals. They may have level `> 1. Note however
that for ĝ= ŝln and ` > 1 these Fock space representations are irreducible as Uq(ĝ)⊗H -modules.
Hence they are not isomorphic to the representations F[m`] for ` > 1.
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