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It is an extremely useful thing to have knowledge of the true origins of
memorable discoveries.

It is not so much that thereby history may attribute to each man his
own discoveries, as that the art of making discoveries should be
extended by considering noteworthy examples of it.

G. W. Leibniz





Chern classes of a tensor product

E , a complex vector bundle of rank m on a variety X .

c(E) = 1 + c1(E) + c2(E) + · · ·+ cm(E) ∈ H∗(X ), its total
Chern class.

c(E) =
m

∏
i=1

(1 + xi), where xi ’s are Chern roots of E .

ck (E) = ek (x1, . . . ,xm), k th elementary symmetric polynomial
in xi ’s.

F , another vector bundle of rank n on X .

c(F ) =
n

∏
i=1

(1 + yj), where yj ’s are Chern roots of F .

Problem
Calculate the Chern classes of E ⊗F in terms of the Chern classes of
E and F .
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Chern classes of a tensor product

Properties of Chern classes imply:

c(E ⊗F ) =
m

∏
i=1

n

∏
j=1

(1 + xi + yj).

In particular, top Chern class is:

cmn(E ⊗F ) = ∏
i ,j

(xi + yj) = (y1 · · ·yn)m
∏
i ,j

(1 + xi/yj).

Writing y∗ = (1/y1, . . . ,1/yn), we have

ek (y∗) = en−k (y)/(y1 · · ·yn).

For a partition λ = (λ1 ≥ λ2 ≥ ·· · ≥ λm)⊆ (nm), put

λ
∗ := (n−λm ≥ n−λm−1 ≥ ·· · ≥ n−λ1).
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Chern classes of a tensor product

By Cauchy formula,

cmn(E ⊗F ) = ∏
i ,j

(xi + yj) = ∑
λ⊆(nm)

sλ (x)s(λ ∗)′(y).

Same calculation gives:

c(E ⊗F ) = ∏
i ,j

((1 + xi) + yj) = ∑
λ⊆(nm)

sλ (1 + x)s(λ ∗)′(y),

where

sλ (1+x) := sλ (1+x1, . . . ,1+xm) =
aλ+δ (1 + x1, . . . ,1 + xm)

aδ (1 + x1, . . . ,1 + xm)
.
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Chern classes of a tensor product

aδ (1 + x1, . . . ,1 + xm) = aδ (x1, . . . ,xm).

Since (1 + xi)
λj+m−j = ∑

k

(
λj + m− j

k

)
xk

i , we have

aλ+δ (1 + x1, . . . ,1 + xm) = ∑
µ⊆λ

dλ µaµ+δ (x1, . . . ,xm),

where:

dλ µ := det
((

λj + m− j
µi + m− i

))
1≤i ,j≤m

.

Theorem (Lascoux 1978)

c(E ⊗F ) = ∑
µ⊆λ⊆(nm)

dλ µsµ (x)s(λ ∗)′(y).
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Lascoux and Chern



Algebraic geometers have introduced an adequate framework for
studying symmetric polynomials.

They have hardly used it for explicit calculations, which were not
their aim.

One rather finds in their work statements of the form:

“there exist universal symmetric polynomials ...”

Alain Lascoux,

Combinatoire et représentation du groupe symétrique, Strasbourg
1976.
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Schubert polynomials

R[x ] := R[x1, . . . ,xn].

For (1≤ i < n), divided difference operator ∂i : R[x ]→ R[x ]

(∂i f )(x) :=
f (x1, . . . ,xi ,xi+1, . . . ,xn)− f (x1, . . . ,xi+1,xi , . . . ,xn)

xi −xi+1

Satisfy NilHecke relations:

∂ 2
i = 0,

∂i∂j = ∂j∂i if |i− j | ≥ 1,
∂i∂j∂i = ∂j∂i∂j if |i− j |= 1.

 well-defined operator ∂w for w ∈ Sn.

y = (y1, . . . ,yn), R := Z[y ], R[x ] = Z[x ,y ].
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Schubert polynomials

w0, the longest element of Sn.

∆(x ,y) := ∏i+j≤n(xi −yj).

Definition (Lascoux-Schützenberger, 1982)

For w ∈ Sn, set

Sw (x ,y) := ∂w−1w0
(∆(x ,y)) ∈ Z[x ,y ],

where divided differences only act on x .

Simple Schubert polynomials:

Sw (x) := Sw (x ,0).
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Schubert polynomials (n = 3)

(x1−y1)(x1−y2)(x2−y1)

∂1uu

∂2

))
(x1−y1)(x2−y1)

∂2

��

(x1−y1)(x1−y2)

∂1

��
x1−y1

∂1

))

x1 + x2−y1−y2

∂2

uu1

• x-y symmetry: Sw (y ,x) = (−1)`(w)Sw−1(x ,y).
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Schubert polynomials and the flag variety

Let I be the ideal of Z[x ] generated by symmetric polynomials of
positive degree. It follows from Borel and Bernstein, Gelfand,
Gelfand that:

H = Z[x ]/I is isomorphic to the cohomology ring of Fl(Cn).

The xi ’s are the Chern classes of the quotient line bundles
Vi → Vi−1.
The Sw (x) mod I coincide with the basis of Poincaré duals of
fundamental classes of Schubert varieties (e.g. Sw0 ≡ [Xe]).

Problem
Calculate the total Chern class of the tangent bundle T of Fl(Cn)

c(T ) = ∏
i<j

(1 + xi −xj)

in terms of the Sw (x).
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fundamental classes of Schubert varieties (e.g. Sw0 ≡ [Xe]).

Problem
Calculate the total Chern class of the tangent bundle T of Fl(Cn)

c(T ) = ∏
i<j

(1 + xi −xj)

in terms of the Sw (x).



Schubert polynomials and the flag variety

Let I be the ideal of Z[x ] generated by symmetric polynomials of
positive degree. It follows from Borel and Bernstein, Gelfand,
Gelfand that:

H = Z[x ]/I is isomorphic to the cohomology ring of Fl(Cn).
The xi ’s are the Chern classes of the quotient line bundles
Vi → Vi−1.
The Sw (x) mod I coincide with the basis of Poincaré duals of
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Chern classes of the flag variety

Set x+ = (x1 + 1, . . . ,xn + 1) and y = (xn, . . . ,x1).

Then

c(T ) = ∏
i<j

((1 + xi)−xj) = ∆(x+,y) = Sw0(x+,y).

Using Cauchy formula for double Schubert polynomials:

Sw (a,b) = ∑
∂u∂v=∂w

Sv (a)Su−1(−b)

and:
Sw (−y)≡Sw0ww0(x) mod I ,

we get:
c(T )≡∑

w
Sw (x+)Sw0w (x) mod I .

Using Cauchy formula for expanding Sw (x+) = Sw (x ,−1)
yields:
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Chern classes of the flag variety

Theorem (Lascoux 1982)
In the cohomology ring H ,

c(T ) = ∑
v ,w

Sv (1)Svw (x)Sw0w (x),

sum over v ,w ∈ Sn with `(w) = `(v) + `(vw).

The monomial expansion of Sv (x) has combinatorial
descriptions (Billey, Fomin, Jockusch, Kirillov, Kohnert,
Lascoux, Reiner, Schützenberger, Shimozono, Stanley, Winkel).

 The Sv (1) are well-understood (Macdonald’s formula).

There is no combinatorial description of the Schubert expansion
of a product of Schubert polynomials.
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Schubert polynomials and degeneracy loci

Let h : E → F be a map of vector bundles on a variety X , and

E1 ⊂ E2 ⊂ ·· · ⊂ Em = E , F = Fn→ Fn−1→ ··· → F1

be two flags of subbundles and quotient bundles.

Given integers r(p,q) (1≤ p ≤m, 1≤ q ≤ n), define

Ωr(h) := {x ∈ X | rk(h(x) : Ep(x)→ Fq(x))≤ r(p,q),∀p,q}.

Theorem (Fulton, 1991)
Under appropriate conditions on the rank function r, and for a generic
map h, the class [Ωr(h)] ∈ H∗(X ) is a double Schubert polynomial in
the Chern roots of E and F .
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Schubert polynomials and degeneracy loci

William Fulton, Flags, Schubert polynomials, degeneracy loci, and
determinantal formulas, Duke Math. J. 1991.

Since the cohomology of the flag manifold is the quotient of a ring of
polynomials by an ideal generated by symmetric polynomials, a
formula for Schubert varieties, as in [BGG] or [D], is only
determined up to this ideal. Lascoux and Schützenberger introduced
Schubert polynomials as a set of representatives for these classes with
particularly nice properties. The present work can be seen as a
complete geometric vindication of their insight: the Schubert
polynomials are the only polynomials that satisfy the general
degeneracy formula.
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The plactic monoid

A = (a < b < c < · · ·), an ordered alphabet of noncommutative
variables.

A∗, the free monoid on A.

Definition
The plactic monoid Pl(A) is the quotient A∗/≡, where ≡ is the
congruence generated by the Knuth relations:

xzy ≡ zxy (x ≤ y < z ∈ A),

yxz ≡ yzx (x < y ≤ z ∈ A).

Robinson-Schensted, Knuth:
 each plactic class contains a unique Young tableau.

 get an associative multiplication on the set of Young tableaux.
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The Foulkes conjecture

Define the Kostka-Foulkes polynomials Kλ µ (q) by

sλ (x) = ∑
µ

Kλ µ (q)Pµ (q;x),

where the Pµ (q;x)’s are the Hall-Littlewood functions.

Problem (Foulkes, 1974)

Show that Kλ µ (q) ∈ N[q]

by producing a combinatorial statistics
T 7→ c(T ) on the set of Young tableaux of shape λ and weight µ ,
such that:

Kλ µ (q) = ∑
T∈Tab(λ ,µ)

q c(T ).
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Cyclage and charge

The conjugacy relation in a monoid M is the equivalence ∼
generated by: uv ∼ vu, (u,v ∈M ).

In the plactic monoid Pl(A), the conjucacy classes are the sets
Tab(·,µ) of Young tableaux of weight µ .

Theorem (Lascoux-Schützenberger, 1978)

• There is a well-defined statistics T 7→ co(T ) on Tab(·,µ) such that

co(R) = 0 for the unique row tableau R ∈ Tab(·,µ).

Let x be the first letter of the first row of the tableau T 6= R, so
that T = xw . Let T ′ be the unique tableau in the plactic class of
wx . Then co(T ) = co(T ′) + 1.

• Let c(T ) := max{co(U) | U ∈ Tab(·,µ)}− co(T ). Then c(T ) is the
required statistics.
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The plactic monoid (continued)

Marcel-Paul Schützenberger, in Pour le monoı̈de plaxique, a letter to
G.-C. Rota, 1995.

In various places (Japan, Strasbourg, MIT, Marne-la-Vallée),
mathematicians developing the theory of quantum groups have found
the plactic monoid or one of its quotients as particular cases of their
constructions: when, in their poetics, they let the temperature q tend
to 0 in order to crystallize them.

J.-Y. Thibon and B. Leclerc are sailing up the big rivers of this
continent which they are discovering. A. Lascoux is organizing the
expedition, and I am watching them going off, lying in my hammock
hanging from mangroves at the estuary.
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LLT in action



LLT polynomials

We can write

Q′µ (q;x) = ∑
λ

Kλ ,µ (q)sλ (x),

where Q′µ (q;x) is the modified dual Hall-Littlewood function.

Q′µ (1;x) = ∏
k

hµk (x), so Q′µ (q;x) is a q-analogue of a product

of complete homogeneous functions.

LLT polynomials are generalizations of the Q′µ (q;x) giving
q-analogues of products of Schur functions.

They are defined combinatorially in terms of ribbon tableaux.
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Ribbon tableaux and symmetric functions

Given λ (1), . . . ,λ (n), partitions, there is a unique partition λ with
n-quotient (λ (1), . . . ,λ (n)).

There holds:

s
λ (1)(x) · · ·s

λ (n)(x) = ∑
µ

|Tabn(λ ,µ)|mµ (x)

= ∑
T∈Tabn(λ ,·)

xT .

Theorem (Lascoux-L-Thibon, 1997)

Define: G(λ
(1), . . . ,λ (n);q;x) := ∑

T∈Tabn(λ ,·)
q spin(T )xT .

• G(λ (1), . . . ,λ (n);q;x) is a symmetric function.

• G((µ1), . . . ,(µn);q;x) = Q′µ (q;x).
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LLT polynomials (continued)

Write: G(λ
(1), . . . ,λ (n);q;x) := ∑

ν

cν

λ (1)···λ (n)(q)sν (x).

cν

λ (1)···λ (n)(q) is a parabolic Kazhdan-Lusztig polynomial of
affine type A (L-Thibon, 1998).

 cν

λ (1)···λ (n)(q) ∈ N[q] (Kashiwara-Tanisaki, 1999).

Haglund, Haiman and Loehr generalized LLT polynomials to skew
shapes λ/µ .

Combinatorial expansion of Macdonald polynomials in terms of
generalized LLT (Haglund-Haiman-Loehr, 2005).

Positivity of generalized LLT new proof of the positivity of
(q, t)-Kostka polynomials (Haiman-Grojnowski, 2008).
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