Alain Lascoux:
 From geometry to combinatorics

Bernard Leclerc
Université de Caen

FPSAC, Chicago, 29/06/2014

In memory of Alain Lascoux (1944-2013)

It is an extremely useful thing to have knowledge of the true origins of memorable discoveries.

It is not so much that thereby history may attribute to each man his own discoveries, as that the art of making discoveries should be extended by considering noteworthy examples of it.
G. W. Leibniz

GÉOMÉTRIE ALGÉBRIQUE. - Classes de Chern d'un produit tensoriel. Note (*) de Alain Lascoux, présentée par M. Henri Cartan.

Nous donnons l'expression explicite des classes de Chern d'un produit tensoriel de deux fibrés vectoriels, ainsi que celles de la puissance extérieure et de la puissance symétrique deuxièmes.

We give the explicit formula for a tensor product of vector bundles, and for the second symmerric and exterior power.

On a souvent besoin en géométrie, par exemple pour le calcul des singularités dites de Thom-Boardman dès le deuxième ordre, de l'expression des classes de Chern d'un produit tensoriel et d'un produit symétrique. Le calcul se révèle vite impraticable par la méthode usuelle $\left[c f .\left({ }^{5}\right)\right]$, alors que la théorie classique des fonctions de Schur permet de le mener à bien; nous renvoyons à $\left({ }^{1}\right)$ pour les développements récents.

1. Produit tensoriel. - Soient E un fibré vectoriel complexe de rang m et $c(\mathrm{E})=1+c_{1}(\mathrm{E})+\ldots+c_{m}(\mathrm{E})$ sa classe de Chern dans un anneau de cohomologie convenable. Rappelons qu'on peut décomposer formellement $c(\mathrm{E})$ en un produit de m facteurs : $c(\mathrm{E})=(1+a)(1+b) \ldots$, de sorte que les $c_{i}(\mathrm{E})$ sont les fonctions symétriques élémentaires en les $a, b \ldots$ On écrira $c(\mathrm{E})=\Pi_{a \in \mathrm{E}}(1+a)$. On préfère utiliser les classes de

Chern classes of a tensor product

Chern classes of a tensor product

- E, a complex vector bundle of rank m on a variety X.

Chern classes of a tensor product

- E, a complex vector bundle of rank m on a variety X.
- $c(E)=1+c_{1}(E)+c_{2}(E)+\cdots+c_{m}(E) \in H^{*}(X)$, its total Chern class.

Chern classes of a tensor product

- E, a complex vector bundle of rank m on a variety X.
- $c(E)=1+c_{1}(E)+c_{2}(E)+\cdots+c_{m}(E) \in H^{*}(X)$, its total Chern class.
- $c(E)=\prod_{i=1}^{m}\left(1+x_{i}\right)$, where x_{i} 's are Chern roots of E.

Chern classes of a tensor product

- E, a complex vector bundle of rank m on a variety X.
- $c(E)=1+c_{1}(E)+c_{2}(E)+\cdots+c_{m}(E) \in H^{*}(X)$, its total Chern class.
- $c(E)=\prod_{i=1}^{m}\left(1+x_{i}\right)$, where x_{i} 's are Chern roots of E.
- $c_{k}(E)=e_{k}\left(x_{1}, \ldots, x_{m}\right), k$ th elementary symmetric polynomial in X_{i} 's.

Chern classes of a tensor product

- E, a complex vector bundle of rank m on a variety X.
- $c(E)=1+c_{1}(E)+c_{2}(E)+\cdots+c_{m}(E) \in H^{*}(X)$, its total Chern class.
- $c(E)=\prod_{i=1}^{m}\left(1+x_{i}\right)$, where x_{i} 's are Chern roots of E.
- $c_{k}(E)=e_{k}\left(x_{1}, \ldots, x_{m}\right), k$ th elementary symmetric polynomial in X_{i} 's.
- F, another vector bundle of rank n on X.

Chern classes of a tensor product

- E, a complex vector bundle of rank m on a variety X.
- $c(E)=1+c_{1}(E)+c_{2}(E)+\cdots+c_{m}(E) \in H^{*}(X)$, its total Chern class.
- $c(E)=\prod_{i=1}^{m}\left(1+x_{i}\right)$, where x_{i} 's are Chern roots of E.
- $c_{k}(E)=e_{k}\left(x_{1}, \ldots, x_{m}\right), k$ th elementary symmetric polynomial in X_{i} 's.
- F, another vector bundle of rank n on X.
- $c(F)=\prod_{i=1}^{n}\left(1+y_{j}\right)$, where y_{j} 's are Chern roots of F.

Chern classes of a tensor product

- E, a complex vector bundle of rank m on a variety X.
- $c(E)=1+c_{1}(E)+c_{2}(E)+\cdots+c_{m}(E) \in H^{*}(X)$, its total Chern class.
- $c(E)=\prod_{i=1}^{m}\left(1+x_{i}\right)$, where x_{i} 's are Chern roots of E.
- $c_{k}(E)=e_{k}\left(x_{1}, \ldots, x_{m}\right), k$ th elementary symmetric polynomial in X_{i} 's.
- F, another vector bundle of rank n on X.
- $c(F)=\prod_{i=1}^{n}\left(1+y_{j}\right)$, where y_{j} 's are Chern roots of F.

Problem

Calculate the Chern classes of $E \otimes F$ in terms of the Chern classes of E and F.

Chern classes of a tensor product

- Properties of Chern classes imply:

$$
c(E \otimes F)=\prod_{i=1}^{m} \prod_{j=1}^{n}\left(1+x_{i}+y_{j}\right)
$$

Chern classes of a tensor product

- Properties of Chern classes imply:

$$
c(E \otimes F)=\prod_{i=1}^{m} \prod_{j=1}^{n}\left(1+x_{i}+y_{j}\right)
$$

- In particular, top Chern class is:

$$
c_{m n}(E \otimes F)=\prod_{i, j}\left(x_{i}+y_{j}\right)=\left(y_{1} \cdots y_{n}\right)^{m} \prod_{i, j}\left(1+x_{i} / y_{j}\right)
$$

Chern classes of a tensor product

- Properties of Chern classes imply:

$$
c(E \otimes F)=\prod_{i=1}^{m} \prod_{j=1}^{n}\left(1+x_{i}+y_{j}\right)
$$

- In particular, top Chern class is:

$$
c_{m n}(E \otimes F)=\prod_{i, j}\left(x_{i}+y_{j}\right)=\left(y_{1} \cdots y_{n}\right)^{m} \prod_{i, j}\left(1+x_{i} / y_{j}\right) .
$$

- Writing $y^{*}=\left(1 / y_{1}, \ldots, 1 / y_{n}\right)$, we have

$$
e_{k}\left(y^{*}\right)=e_{n-k}(y) /\left(y_{1} \cdots y_{n}\right)
$$

Chern classes of a tensor product

- Properties of Chern classes imply:

$$
c(E \otimes F)=\prod_{i=1}^{m} \prod_{j=1}^{n}\left(1+x_{i}+y_{j}\right)
$$

- In particular, top Chern class is:

$$
c_{m n}(E \otimes F)=\prod_{i, j}\left(x_{i}+y_{j}\right)=\left(y_{1} \cdots y_{n}\right)^{m} \prod_{i, j}\left(1+x_{i} / y_{j}\right)
$$

- Writing $y^{*}=\left(1 / y_{1}, \ldots, 1 / y_{n}\right)$, we have

$$
e_{k}\left(y^{*}\right)=e_{n-k}(y) /\left(y_{1} \cdots y_{n}\right)
$$

- For a partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{m}\right) \subseteq\left(n^{m}\right)$, put

$$
\lambda^{*}:=\left(n-\lambda_{m} \geq n-\lambda_{m-1} \geq \cdots \geq n-\lambda_{1}\right) .
$$

Chern classes of a tensor product

- By Cauchy formula,

$$
c_{m n}(E \otimes F)=\prod_{i, j}\left(x_{i}+y_{j}\right)=\sum_{\lambda \subseteq\left(n^{m}\right)} s_{\lambda}(x) s_{\left(\lambda^{*}\right)^{\prime}}(y) .
$$

Chern classes of a tensor product

- By Cauchy formula,

$$
c_{m n}(E \otimes F)=\prod_{i, j}\left(x_{i}+y_{j}\right)=\sum_{\lambda \subseteq\left(n^{m}\right)} s_{\lambda}(x) s_{\left(\lambda^{*}\right)^{\prime}}(y) .
$$

- Same calculation gives:

$$
c(E \otimes F)=\prod_{i, j}\left(\left(1+x_{i}\right)+y_{j}\right)=\sum_{\lambda \subseteq\left(n^{m}\right)} s_{\lambda}(1+x) s_{\left(\lambda^{*}\right)^{\prime}}(y),
$$

where

$$
s_{\lambda}(1+x):=s_{\lambda}\left(1+x_{1}, \ldots, 1+x_{m}\right)=\frac{a_{\lambda+\delta}\left(1+x_{1}, \ldots, 1+x_{m}\right)}{a_{\delta}\left(1+x_{1}, \ldots, 1+x_{m}\right)}
$$

Chern classes of a tensor product

$$
a_{\delta}\left(1+x_{1}, \ldots, 1+x_{m}\right)=a_{\delta}\left(x_{1}, \ldots, x_{m}\right)
$$

Chern classes of a tensor product

- $a_{\delta}\left(1+x_{1}, \ldots, 1+x_{m}\right)=a_{\delta}\left(x_{1}, \ldots, x_{m}\right)$.
- Since $\left(1+x_{i}\right)^{\lambda_{j}+m-j}=\sum_{k}\binom{\lambda_{j}+m-j}{k} x_{i}^{k}$, we have

$$
a_{\lambda+\delta}\left(1+x_{1}, \ldots, 1+x_{m}\right)=\sum_{\mu \subseteq \lambda} d_{\lambda \mu} a_{\mu+\delta}\left(x_{1}, \ldots, x_{m}\right),
$$

where:

$$
d_{\lambda \mu}:=\operatorname{det}\left(\binom{\lambda_{j}+m-j}{\mu_{i}+m-i}\right)_{1 \leq i, j \leq m}
$$

Chern classes of a tensor product

- $a_{\delta}\left(1+x_{1}, \ldots, 1+x_{m}\right)=a_{\delta}\left(x_{1}, \ldots, x_{m}\right)$.
- Since $\left(1+x_{i}\right)^{\lambda_{j}+m-j}=\sum_{k}\binom{\lambda_{j}+m-j}{k} x_{i}^{k}$, we have

$$
a_{\lambda+\delta}\left(1+x_{1}, \ldots, 1+x_{m}\right)=\sum_{\mu \subseteq \lambda} d_{\lambda \mu} a_{\mu+\delta}\left(x_{1}, \ldots, x_{m}\right),
$$

where:

$$
d_{\lambda \mu}:=\operatorname{det}\left(\binom{\lambda_{j}+m-j}{\mu_{i}+m-i}\right)_{1 \leq i, j \leq m}
$$

Theorem (Lascoux 1978)

$$
c(E \otimes F)=\sum_{\mu \subseteq \lambda \subseteq\left(n^{m}\right)} d_{\lambda \mu} s_{\mu}(x) s_{\left(\lambda^{*}\right)^{\prime}}(y)
$$

Lascoux and Chern

Algebraic geometers have introduced an adequate framework for studying symmetric polynomials.

Algebraic geometers have introduced an adequate framework for studying symmetric polynomials.

They have hardly used it for explicit calculations, which were not their aim.

Algebraic geometers have introduced an adequate framework for studying symmetric polynomials.

They have hardly used it for explicit calculations, which were not their aim.

One rather finds in their work statements of the form: "there exist universal symmetric polynomials ..."

Algebraic geometers have introduced an adequate framework for studying symmetric polynomials.

They have hardly used it for explicit calculations, which were not their aim.

One rather finds in their work statements of the form:
"there exist universal symmetric polynomials ..."

Alain Lascoux,
Combinatoire et représentation du groupe symétrique, Strasbourg 1976.

Schubert polynomials

Schubert polynomials

$$
\text { - } R[x]:=R\left[x_{1}, \ldots, x_{n}\right] \text {. }
$$

Schubert polynomials

- $R[x]:=R\left[x_{1}, \ldots, x_{n}\right]$.
- For $(1 \leq i<n)$, divided difference operator $\partial_{i}: R[x] \rightarrow R[x]$

$$
\left(\partial_{i} f\right)(x):=\frac{f\left(x_{1}, \ldots, x_{i}, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{n}\right)}{x_{i}-x_{i+1}}
$$

Schubert polynomials

- $R[x]:=R\left[x_{1}, \ldots, x_{n}\right]$.
- For $(1 \leq i<n)$, divided difference operator $\partial_{i}: R[x] \rightarrow R[x]$

$$
\left(\partial_{i} f\right)(x):=\frac{f\left(x_{1}, \ldots, x_{i}, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{n}\right)}{x_{i}-x_{i+1}}
$$

- Satisfy NilHecke relations:

$$
\begin{array}{lll}
\partial_{i}^{2} & =0, & \\
\partial_{i} \partial_{j} & =\partial_{j} \partial_{i} \quad \text { if }|i-j| \geq 1 \\
\partial_{i} \partial_{j} \partial_{i} & =\partial_{j} \partial_{i} \partial_{j} \quad \text { if }|i-j|=1
\end{array}
$$

Schubert polynomials

- $R[x]:=R\left[x_{1}, \ldots, x_{n}\right]$.
- For $(1 \leq i<n)$, divided difference operator $\partial_{i}: R[x] \rightarrow R[x]$

$$
\left(\partial_{i} f\right)(x):=\frac{f\left(x_{1}, \ldots, x_{i}, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{n}\right)}{x_{i}-x_{i+1}}
$$

- Satisfy NilHecke relations:

$$
\begin{array}{lll}
\partial_{i}^{2} & =0, & \\
\partial_{i} \partial_{j} & =\partial_{j} \partial_{i} & \text { if }|i-j| \geq 1 \\
\partial_{i} \partial_{j} \partial_{i} & =\partial_{j} \partial_{i} \partial_{j} \quad \text { if }|i-j|=1
\end{array}
$$

\rightsquigarrow well-defined operator ∂_{w} for $w \in S_{n}$.

Schubert polynomials

- $R[x]:=R\left[x_{1}, \ldots, x_{n}\right]$.
- For $(1 \leq i<n)$, divided difference operator $\partial_{i}: R[x] \rightarrow R[x]$

$$
\left(\partial_{i} f\right)(x):=\frac{f\left(x_{1}, \ldots, x_{i}, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i+1}, x_{i}, \ldots, x_{n}\right)}{x_{i}-x_{i+1}}
$$

- Satisfy NilHecke relations:

$$
\begin{array}{lll}
\partial_{i}^{2} & =0, & \\
\partial_{i} \partial_{j} & =\partial_{j} \partial_{i} & \text { if }|i-j| \geq 1 \\
\partial_{i} \partial_{j} \partial_{i} & =\partial_{j} \partial_{i} \partial_{j} \quad \text { if }|i-j|=1
\end{array}
$$

\rightsquigarrow well-defined operator ∂_{w} for $w \in S_{n}$.

- $y=\left(y_{1}, \ldots, y_{n}\right), R:=\mathbb{Z}[y], R[x]=\mathbb{Z}[x, y]$.

Schubert polynomials

- w_{0}, the longest element of S_{n}.

Schubert polynomials

- w_{0}, the longest element of S_{n}.
- $\Delta(x, y):=\prod_{i+j \leq n}\left(x_{i}-y_{j}\right)$.

Schubert polynomials

- w_{0}, the longest element of S_{n}.
- $\Delta(x, y):=\prod_{i+j \leq n}\left(x_{i}-y_{j}\right)$.

Definition (Lascoux-Schützenberger, 1982)

For $w \in S_{n}$, set

$$
\mathfrak{S}_{w}(x, y):=\partial_{w^{-1} w_{0}}(\Delta(x, y)) \in \mathbb{Z}[x, y]
$$

where divided differences only act on x.

Schubert polynomials

- w_{0}, the longest element of S_{n}.
- $\Delta(x, y):=\prod_{i+j \leq n}\left(x_{i}-y_{j}\right)$.

Definition (Lascoux-Schützenberger, 1982)

For $w \in S_{n}$, set

$$
\mathfrak{S}_{w}(x, y):=\partial_{w^{-1} w_{0}}(\Delta(x, y)) \in \mathbb{Z}[x, y]
$$

where divided differences only act on x.

- Simple Schubert polynomials:

$$
\mathfrak{S}_{w}(x):=\mathfrak{S}_{w}(x, 0)
$$

Schubert polynomials $(n=3)$

Schubert polynomials $(n=3)$

- $x-y$ symmetry: $\mathfrak{S}_{w}(y, x)=(-1)^{\ell(w)} \mathfrak{S}_{w^{-1}}(x, y)$.

Schubert polynomials and the flag variety

Schubert polynomials and the flag variety

Let \mathscr{I} be the ideal of $\mathbb{Z}[x]$ generated by symmetric polynomials of positive degree.

Schubert polynomials and the flag variety

Let \mathscr{I} be the ideal of $\mathbb{Z}[x]$ generated by symmetric polynomials of positive degree. It follows from Borel and Bernstein, Gelfand, Gelfand that:

- $\mathscr{H}=\mathbb{Z}[x] / \mathscr{I}$ is isomorphic to the cohomology ring of $\mathrm{Fl}\left(\mathbb{C}^{n}\right)$.

Schubert polynomials and the flag variety

Let \mathscr{I} be the ideal of $\mathbb{Z}[x]$ generated by symmetric polynomials of positive degree. It follows from Borel and Bernstein, Gelfand, Gelfand that:

- $\mathscr{H}=\mathbb{Z}[x] / \mathscr{I}$ is isomorphic to the cohomology ring of $\mathrm{Fl}\left(\mathbb{C}^{n}\right)$. The x_{i} 's are the Chern classes of the quotient line bundles $V_{i} \rightarrow V_{i-1}$.

Schubert polynomials and the flag variety

Let \mathscr{I} be the ideal of $\mathbb{Z}[x]$ generated by symmetric polynomials of positive degree. It follows from Borel and Bernstein, Gelfand, Gelfand that:

- $\mathscr{H}=\mathbb{Z}[x] / \mathscr{I}$ is isomorphic to the cohomology ring of $\mathrm{Fl}\left(\mathbb{C}^{n}\right)$. The x_{i} 's are the Chern classes of the quotient line bundles $V_{i} \rightarrow V_{i-1}$.
- The $\mathfrak{S}_{w}(x) \bmod \mathscr{I}$ coincide with the basis of Poincaré duals of fundamental classes of Schubert varieties (e.g. $\mathfrak{S}_{w_{0}} \equiv\left[X_{e}\right]$).

Schubert polynomials and the flag variety

Let \mathscr{I} be the ideal of $\mathbb{Z}[x]$ generated by symmetric polynomials of positive degree. It follows from Borel and Bernstein, Gelfand, Gelfand that:

- $\mathscr{H}=\mathbb{Z}[x] / \mathscr{I}$ is isomorphic to the cohomology ring of $\mathrm{Fl}\left(\mathbb{C}^{n}\right)$. The x_{i} 's are the Chern classes of the quotient line bundles $V_{i} \rightarrow V_{i-1}$.
- The $\mathfrak{S}_{w}(x) \bmod \mathscr{I}$ coincide with the basis of Poincaré duals of fundamental classes of Schubert varieties (e.g. $\mathfrak{S}_{w_{0}} \equiv\left[X_{e}\right]$).

Problem

Calculate the total Chern class of the tangent bundle T of $\mathrm{Fl}\left(\mathbb{C}^{n}\right)$

$$
c(T)=\prod_{i<j}\left(1+x_{i}-x_{j}\right)
$$

in terms of the $\mathfrak{S}_{w}(x)$.

GÉOMÉTRIE ALGÉBRIQUE. - Classes de Chern des variétés de drapeaux. Note (*) de Alain Lascoux, présentée par Marcel-Paul Schützenberger.

Nous étendons la formule de Cauchy (axiome $\mathrm{n}^{\circ} 2$, dans la numérotation de Grothendieck, de la théorie des λ anneaux) aux polynômes de Schubert, et l'utilisons au calcul des classes de Chern des variétés de drapeaux.

ALGEbraic geometry. - Chern Classes of Flag Manifolds.
We extend Cauchy formula to Schubert polynomials, which are a natural generalization of Schur functions, and use it to compute the Chern classes of flag manifolds.

1. Polynómes de Schubert doubles. - On considère l'anneau commutatif $\mathbb{Z}[A]$ des polynômes en les variables de $\mathrm{A}=\left\{a_{1}, \ldots, a_{n+1}\right\}$ et le groupe symétrique $\mathrm{W}=\mathrm{W}_{n+1}$ des permutations de A . On a défini dans [7] des opérateurs $\mathrm{D}_{w}, \partial_{w}$ indexés par les éléments de W ; on désigne par ω l'élément de plus grande longueur de W . On pose $\mathrm{X}_{\mathrm{\omega}}=a_{1}^{n} a_{2}^{n-1} \ldots a_{n+1}^{0}$, et, suivant Demazure [3], Bernstein, Gelfand et Gelfand [1], on définit les polynômes de Schubert X_{w} par :

$$
\begin{equation*}
\mathrm{X}_{\omega}=\mathrm{X}_{\omega} \partial_{\omega \omega} \tag{1.1}
\end{equation*}
$$

(les opérateurs sont notés à droite).
Soit $\mathrm{B}=\left\{b_{1}, \ldots, b_{n+1}\right\}$ un ensemble de même cardinal que A . On pose :

$$
\begin{equation*}
X_{\omega}(\mathrm{A}, \mathrm{~B})=\Pi_{i+j \leq n+1}\left(a_{i}+b_{j}\right) \tag{1.2}
\end{equation*}
$$

Chern classes of the flag variety

Chern classes of the flag variety

- Set $x^{+}=\left(x_{1}+1, \ldots, x_{n}+1\right)$ and $y=\left(x_{n}, \ldots, x_{1}\right)$.

Chern classes of the flag variety

- Set $x^{+}=\left(x_{1}+1, \ldots, x_{n}+1\right)$ and $y=\left(x_{n}, \ldots, x_{1}\right)$. Then

$$
c(T)=\prod_{i<j}\left(\left(1+x_{i}\right)-x_{j}\right)=\Delta\left(x^{+}, y\right)=\mathfrak{S}_{w_{0}}\left(x^{+}, y\right)
$$

Chern classes of the flag variety

- Set $x^{+}=\left(x_{1}+1, \ldots, x_{n}+1\right)$ and $y=\left(x_{n}, \ldots, x_{1}\right)$. Then

$$
c(T)=\prod_{i<j}\left(\left(1+x_{i}\right)-x_{j}\right)=\Delta\left(x^{+}, y\right)=\mathfrak{S}_{w_{0}}\left(x^{+}, y\right)
$$

- Using Cauchy formula for double Schubert polynomials:

$$
\mathfrak{S}_{w}(a, b)=\sum_{\partial_{u} \partial_{v}=\partial_{w}} \mathfrak{S}_{v}(a) \mathfrak{S}_{u^{-1}}(-b)
$$

Chern classes of the flag variety

- Set $x^{+}=\left(x_{1}+1, \ldots, x_{n}+1\right)$ and $y=\left(x_{n}, \ldots, x_{1}\right)$. Then

$$
c(T)=\prod_{i<j}\left(\left(1+x_{i}\right)-x_{j}\right)=\Delta\left(x^{+}, y\right)=\mathfrak{S}_{w_{0}}\left(x^{+}, y\right)
$$

- Using Cauchy formula for double Schubert polynomials:

$$
\mathfrak{S}_{w}(a, b)=\sum_{\partial_{u} \partial_{v}=\partial_{w}} \mathfrak{S}_{v}(a) \mathfrak{S}_{u^{-1}}(-b)
$$

and:

$$
\mathfrak{S}_{w}(-y) \equiv \mathfrak{S}_{w_{0} w w_{0}}(x) \bmod \mathscr{I}
$$

Chern classes of the flag variety

- Set $x^{+}=\left(x_{1}+1, \ldots, x_{n}+1\right)$ and $y=\left(x_{n}, \ldots, x_{1}\right)$. Then

$$
c(T)=\prod_{i<j}\left(\left(1+x_{i}\right)-x_{j}\right)=\Delta\left(x^{+}, y\right)=\mathfrak{S}_{w_{0}}\left(x^{+}, y\right)
$$

- Using Cauchy formula for double Schubert polynomials:

$$
\mathfrak{S}_{w}(a, b)=\sum_{\partial_{u} \partial_{v}=\partial_{w}} \mathfrak{S}_{v}(a) \mathfrak{S}_{u^{-1}}(-b)
$$

and:

$$
\mathfrak{S}_{w}(-y) \equiv \mathfrak{S}_{w_{0} w w_{0}}(x) \bmod \mathscr{I}
$$

we get:

$$
c(T) \equiv \sum_{w} \mathfrak{S}_{w}\left(x^{+}\right) \mathfrak{S}_{w_{0} w}(x) \bmod \mathscr{I}
$$

Chern classes of the flag variety

- Set $x^{+}=\left(x_{1}+1, \ldots, x_{n}+1\right)$ and $y=\left(x_{n}, \ldots, x_{1}\right)$. Then

$$
c(T)=\prod_{i<j}\left(\left(1+x_{i}\right)-x_{j}\right)=\Delta\left(x^{+}, y\right)=\mathfrak{S}_{w_{0}}\left(x^{+}, y\right)
$$

- Using Cauchy formula for double Schubert polynomials:

$$
\mathfrak{S}_{w}(a, b)=\sum_{\partial_{u} \partial_{v}=\partial_{w}} \mathfrak{S}_{v}(a) \mathfrak{S}_{u^{-1}}(-b)
$$

and:

$$
\mathfrak{S}_{w}(-y) \equiv \mathfrak{S}_{w_{0} w w_{0}}(x) \bmod \mathscr{I}
$$

we get:

$$
c(T) \equiv \sum_{w} \mathfrak{S}_{w}\left(x^{+}\right) \mathfrak{S}_{w_{0} w}(x) \bmod \mathscr{I}
$$

- Using Cauchy formula for expanding $\mathfrak{S}_{w}\left(x^{+}\right)=\mathfrak{S}_{w}(x,-1)$ yields:

Chern classes of the flag variety

Theorem (Lascoux 1982)

In the cohomology ring \mathscr{H},

$$
c(T)=\sum_{V, w} \mathfrak{S}_{v}(1) \mathfrak{S}_{v w}(x) \mathfrak{S}_{w_{0} w}(x)
$$

sum over $v, w \in S_{n}$ with $\ell(w)=\ell(v)+\ell(v w)$.

Chern classes of the flag variety

Theorem (Lascoux 1982)

In the cohomology ring \mathscr{H},

$$
c(T)=\sum_{V, w} \mathfrak{S}_{v}(1) \mathfrak{S}_{v w}(x) \mathfrak{S}_{w_{0} w}(x)
$$

sum over $v, w \in S_{n}$ with $\ell(w)=\ell(v)+\ell(v w)$.

- The monomial expansion of $\mathfrak{S}_{v}(x)$ has combinatorial descriptions (Billey, Fomin, Jockusch, Kirillov, Kohnert, Lascoux, Reiner, Schützenberger, Shimozono, Stanley, Winkel).

Chern classes of the flag variety

Theorem (Lascoux 1982)

In the cohomology ring \mathscr{H},

$$
c(T)=\sum_{v, w} \mathfrak{S}_{v}(1) \mathfrak{S}_{v w}(x) \mathfrak{S}_{w_{0} w}(x)
$$

sum over $v, w \in S_{n}$ with $\ell(w)=\ell(v)+\ell(v w)$.

- The monomial expansion of $\mathfrak{S}_{v}(x)$ has combinatorial descriptions (Billey, Fomin, Jockusch, Kirillov, Kohnert, Lascoux, Reiner, Schützenberger, Shimozono, Stanley, Winkel). \rightsquigarrow The $\mathfrak{S}_{v}(1)$ are well-understood (Macdonald's formula).

Chern classes of the flag variety

Theorem (Lascoux 1982)

In the cohomology ring \mathscr{H},

$$
c(T)=\sum_{v, w} \mathfrak{S}_{v}(1) \mathfrak{S}_{v w}(x) \mathfrak{S}_{w_{0} w}(x)
$$

sum over $v, w \in S_{n}$ with $\ell(w)=\ell(v)+\ell(v w)$.

- The monomial expansion of $\mathfrak{S}_{v}(x)$ has combinatorial descriptions (Billey, Fomin, Jockusch, Kirillov, Kohnert, Lascoux, Reiner, Schützenberger, Shimozono, Stanley, Winkel). \rightsquigarrow The $\mathfrak{S}_{v}(1)$ are well-understood (Macdonald's formula).
- There is no combinatorial description of the Schubert expansion of a product of Schubert polynomials.

Longueur	Permutations	c.
0.	12345^{*}	1
$1 .$.	12354, $124355^{*}, 13245 \%, 21345 \%$	2
	$\left\{\begin{array}{l} 13254,21354,21435 \% \\ 12453,12534,13425 \boldsymbol{*}, 14235 \mathbf{V}, 23145 \boldsymbol{*}, 31245 \boldsymbol{*} \end{array}\right.$	6
	$\left\{\begin{array}{l} 12543,14325 \mathbf{V}, 32145 \mathbf{V} \\ 21453,21534,23154,31254 \\ 14253,31425 \mathbf{V} \\ 13524,24135 \boldsymbol{*} \\ 13452,15234,23415 \mathbf{V}, 41235 \mathbf{V} \end{array}\right.$	6 12 16 20 22
	$\left\lvert\, \begin{aligned} & 21543,32154 \\ & 13542,15324,24315 \boldsymbol{*}, 42135 \% \\ & 14352,15243,32415 \boldsymbol{*}, 41325 \% \end{aligned}\right.$	12 24 28 44
4	24153, 31524	44 52
	31452, 41253	56
	23514, 25134	78
	23451, 51234	90
	$\left(\begin{array}{l} 14523,15423,34215 \mathrm{~V}, 43125 \mathrm{~V} \\ 15342,42315 \% \\ 31542,42153 \end{array}\right.$	36 48 60
	23541, 25314, 52134	102
	25143,32514	104
	41352	112
	32451, 51243	124
	51 324, 24351	128
	41523, 34152	152
	15124, 24513	184
	(15432, 43215*	24
	41532,43152	132
	52143, 32 541	144
	25413,35214	162
	53124, 24531	174
	51423, 34251	224
	52314, 25341	228
	51342,42351	268
	35142, 42,513	320
	45123, 34512	436
	(53214, 25431	120
	51432, 43251	180
	54123,34521	330
	53142, 42531	360
	$45213,35412$	390
	45132, 52413, 43512, 35241	420
	52341	600
	$\left\{\begin{array}{l} 54213,35421 \\ 54132,43521 \end{array}\right.$	240 300
	45312,52431, 53241	420
	53412,45231	600
	\{ 45321,54312	240
	- 53421.54231	360
$10 .$.	54321	120

Schubert polynomials and degeneracy loci

Schubert polynomials and degeneracy loci

- Let $h: E \rightarrow F$ be a map of vector bundles on a variety X, and

$$
E_{1} \subset E_{2} \subset \cdots \subset E_{m}=E, \quad F=F_{n} \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{1}
$$

be two flags of subbundles and quotient bundles.

Schubert polynomials and degeneracy loci

- Let $h: E \rightarrow F$ be a map of vector bundles on a variety X, and

$$
E_{1} \subset E_{2} \subset \cdots \subset E_{m}=E, \quad F=F_{n} \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{1}
$$

be two flags of subbundles and quotient bundles.

- Given integers $r(p, q)(1 \leq p \leq m, 1 \leq q \leq n)$, define

$$
\Omega_{\mathbf{r}}(h):=\left\{x \in X \mid \operatorname{rk}\left(h(x): E_{p}(x) \rightarrow F_{q}(x)\right) \leq r(p, q), \forall p, q\right\} .
$$

Schubert polynomials and degeneracy loci

- Let $h: E \rightarrow F$ be a map of vector bundles on a variety X, and

$$
E_{1} \subset E_{2} \subset \cdots \subset E_{m}=E, \quad F=F_{n} \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{1}
$$

be two flags of subbundles and quotient bundles.

- Given integers $r(p, q)(1 \leq p \leq m, 1 \leq q \leq n)$, define
$\Omega_{\mathbf{r}}(h):=\left\{x \in X \mid \operatorname{rk}\left(h(x): E_{p}(x) \rightarrow F_{q}(x)\right) \leq r(p, q), \forall p, q\right\}$.

Theorem (Fulton, 1991)

Under appropriate conditions on the rank function \mathbf{r}, and for a generic map h, the class $\left[\Omega_{\mathrm{r}}(h)\right] \in H^{*}(X)$ is a double Schubert polynomial in the Chern roots of E and F.

Schubert polynomials and degeneracy loci

William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 1991.

Schubert polynomials and degeneracy loci

William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 1991.

Since the cohomology of the flag manifold is the quotient of a ring of polynomials by an ideal generated by symmetric polynomials, a formula for Schubert varieties, as in [BGG] or [D], is only determined up to this ideal.

Schubert polynomials and degeneracy loci

William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 1991.

Since the cohomology of the flag manifold is the quotient of a ring of polynomials by an ideal generated by symmetric polynomials, a formula for Schubert varieties, as in [BGG] or [D], is only determined up to this ideal. Lascoux and Schützenberger introduced Schubert polynomials as a set of representatives for these classes with particularly nice properties.

Schubert polynomials and degeneracy loci

William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas, Duke Math. J. 1991.

Since the cohomology of the flag manifold is the quotient of a ring of polynomials by an ideal generated by symmetric polynomials, a formula for Schubert varieties, as in [BGG] or [D], is only determined up to this ideal. Lascoux and Schützenberger introduced Schubert polynomials as a set of representatives for these classes with particularly nice properties. The present work can be seen as a complete geometric vindication of their insight: the Schubert polynomials are the only polynomials that satisfy the general degeneracy formula.

Le tirage de cette these a 巨t巨 assu九e par les techniciennes de R＇U．E．R．de Mathematiques de ℓ^{\prime} Universite de Paris VII， Mesdames Barrier et Girbert．

The plactic monoid

The plactic monoid

- $A=(a<b<c<\cdots)$, an ordered alphabet of noncommutative variables.

The plactic monoid

- $A=(a<b<c<\cdots)$, an ordered alphabet of noncommutative variables.
- A^{*}, the free monoid on A.

The plactic monoid

- $A=(a<b<c<\cdots)$, an ordered alphabet of noncommutative variables.
- A^{*}, the free monoid on A.

Definition

The plactic monoid $\operatorname{Pl}(A)$ is the quotient A^{*} / \equiv, where \equiv is the congruence generated by the Knuth relations:

$$
\begin{aligned}
x z y & \equiv z x y \quad(x \leq y<z \in A) \\
y x z & \equiv y z x \quad(x<y \leq z \in A)
\end{aligned}
$$

The plactic monoid

- $A=(a<b<c<\cdots)$, an ordered alphabet of noncommutative variables.
- A^{*}, the free monoid on A.

Definition

The plactic monoid $\operatorname{Pl}(A)$ is the quotient A^{*} / \equiv, where \equiv is the congruence generated by the Knuth relations:

$$
\begin{aligned}
x z y & \equiv z x y \quad(x \leq y<z \in A) \\
y x z & \equiv y z x \quad(x<y \leq z \in A)
\end{aligned}
$$

- Robinson-Schensted, Knuth:
\rightsquigarrow each plactic class contains a unique Young tableau.

The plactic monoid

- $A=(a<b<c<\cdots)$, an ordered alphabet of noncommutative variables.
- A^{*}, the free monoid on A.

Definition

The plactic monoid $\operatorname{Pl}(A)$ is the quotient A^{*} / \equiv, where \equiv is the congruence generated by the Knuth relations:

$$
\begin{aligned}
x z y & \equiv z x y \quad(x \leq y<z \in A) \\
y x z & \equiv y z x \quad(x<y \leq z \in A)
\end{aligned}
$$

- Robinson-Schensted, Knuth:
\rightsquigarrow each plactic class contains a unique Young tableau.
\rightsquigarrow get an associative multiplication on the set of Young tableaux.

The Foulkes conjecture

The Foulkes conjecture

Define the Kostka-Foulkes polynomials $K_{\lambda \mu}(q)$ by

$$
s_{\lambda}(x)=\sum_{\mu} K_{\lambda \mu}(q) P_{\mu}(q ; x)
$$

where the $P_{\mu}(q ; x)$'s are the Hall-Littlewood functions.

The Foulkes conjecture

Define the Kostka-Foulkes polynomials $K_{\lambda \mu}(q)$ by

$$
s_{\lambda}(x)=\sum_{\mu} K_{\lambda \mu}(q) P_{\mu}(q ; x)
$$

where the $P_{\mu}(q ; x)$'s are the Hall-Littlewood functions.

Problem (Foulkes, 1974)

Show that $K_{\lambda \mu}(q) \in \mathbb{N}[q]$

The Foulkes conjecture

Define the Kostka-Foulkes polynomials $K_{\lambda \mu}(q)$ by

$$
s_{\lambda}(x)=\sum_{\mu} K_{\lambda \mu}(q) P_{\mu}(q ; x)
$$

where the $P_{\mu}(q ; x)$'s are the Hall-Littlewood functions.

Problem (Foulkes, 1974)

Show that $K_{\lambda \mu}(q) \in \mathbb{N}[q]$ by producing a combinatorial statistics $T \mapsto \mathrm{c}(T)$ on the set of Young tableaux of shape λ and weight μ, such that:

$$
K_{\lambda \mu}(q)=\sum_{T \in \operatorname{Tab}(\lambda, \mu)} q^{\mathrm{c}(T)}
$$

THEORIE DES GROUPES. - Sur une conjecture de H. O. Foulkes. Note (${ }^{(}$) de Alain Lascoux et Marcel-Paul Schützenberger, présentée par M. André Lichnerowicz.

On annonce la preuve d'une conjecture de H. O. Foulkes sur certains polynômes intervenant dans les fonctions symétriques associées aux représentations projectives du groupe symétrique et des groupes linéaires sur les corps finis.

One sketches a proof of Foulkes' conjecture on the polynomials defining Littlewood Q-functions in terms of Schur functions.

On note $Z^{\mathbb{N}}$ l'ensemble des applications I de N dans Z telles que $n \mathrm{I}=0$ pour tout n assez grand ce qui permet de définir $\mathrm{I}^{\Sigma} \in \mathrm{Z}^{\mathrm{N}}$ par $n \mathrm{I}^{\Sigma}=\sum_{m \geq n} m \mathrm{I}$; le poids de I est donc $0 \mathrm{I}^{\Sigma}$. Les partitions d'un entier n sont les $I \in Z^{\mathbb{N}}$ de poids n telles que $0 I \geqq 1 I \geqq 2 I \geqq \ldots$

Littlewood (${ }^{1}$) a défini une famille basique de fonctions symétriques (en les variables d'un ensemble arbitraire qu'il est inutile d'expliciter) indexées par les partitions, $\{Q(\mathrm{I})\}$ au moyen d'une identité

$$
\begin{equation*}
\mathrm{Q}(\mathrm{I})=\sum s^{\prime}(\mathbf{J}) \mathrm{F}(\mathrm{I} ; \mathbf{J}), \tag{1}
\end{equation*}
$$

dans laquelle les $s^{\prime}(\mathbf{J})$ sont les fonctions de Schur (modifiées), la sommation est étendue à toutes les partitions \mathbf{J} de même poids que I et les $\mathbf{F}(\mathbf{I} ; \mathbf{J})$ sont des polynômes à coefficients entiers en une nouvelle variable q. Nous proposons d'appeler ces derniers polynômes de Foulkes en mémoire du regretté H. O. Foulkes auquel sont dus tant de beaux résultats sur les fonctions symétriques et qui a émis $\left({ }^{2}\right)$ la conjecture que tous leurs coefficients sont dans N . Nous faisons remarquer que ces polynômes sont les caractéristiques (polynomiales) d'EulerPoincaré des modules inversibles de variétés drapeaux.
Nous annonçons le :
Théorème I . - $\mathrm{F}(\mathrm{I} ; \mathrm{J})$ est un polynôme monique à coefficients non négatifs qui est nul si l'une des diffórences $n \mathrm{~T}^{\Sigma}-n \mathrm{I}^{\Sigma}(n \in \mathrm{~N}$ est nóaativo ot dont lo doaró oct óaal à lour commo danc lo cac

Cyclage and charge

Cyclage and charge

- The conjugacy relation in a monoid \mathscr{M} is the equivalence \sim generated by: $u v \sim v u, \quad(u, v \in \mathscr{M})$.

Cyclage and charge

- The conjugacy relation in a monoid \mathscr{M} is the equivalence \sim generated by: $u v \sim v u, \quad(u, v \in \mathscr{M})$.
- In the plactic monoid $\operatorname{Pl}(A)$, the conjucacy classes are the sets $\operatorname{Tab}(\cdot, \mu)$ of Young tableaux of weight μ.

Cyclage and charge

- The conjugacy relation in a monoid \mathscr{M} is the equivalence \sim generated by: $u v \sim v u, \quad(u, v \in \mathscr{M})$.
- In the plactic monoid $\operatorname{Pl}(A)$, the conjucacy classes are the sets $\operatorname{Tab}(\cdot, \mu)$ of Young tableaux of weight μ.

Theorem (Lascoux-Schützenberger, 1978)

Cyclage and charge

- The conjugacy relation in a monoid \mathscr{M} is the equivalence \sim generated by: $u v \sim v u, \quad(u, v \in \mathscr{M})$.
- In the plactic monoid $\operatorname{Pl}(A)$, the conjucacy classes are the sets $\operatorname{Tab}(\cdot, \mu)$ of Young tableaux of weight μ.

Theorem (Lascoux-Schützenberger, 1978)

- There is a well-defined statistics $T \mapsto \operatorname{co}(T)$ on $\operatorname{Tab}(\cdot, \mu)$ such that

Cyclage and charge

- The conjugacy relation in a monoid \mathscr{M} is the equivalence \sim generated by: $u v \sim v u, \quad(u, v \in \mathscr{M})$.
- In the plactic monoid $\operatorname{Pl}(A)$, the conjucacy classes are the sets $\operatorname{Tab}(\cdot, \mu)$ of Young tableaux of weight μ.

Theorem (Lascoux-Schützenberger, 1978)

- There is a well-defined statistics $T \mapsto \operatorname{co}(T)$ on $\operatorname{Tab}(\cdot, \mu)$ such that
- $\operatorname{co}(R)=0$ for the unique row tableau $R \in \operatorname{Tab}(\cdot, \mu)$.

Cyclage and charge

- The conjugacy relation in a monoid \mathscr{M} is the equivalence \sim generated by: $u v \sim v u, \quad(u, v \in \mathscr{M})$.
- In the plactic monoid $\operatorname{Pl}(A)$, the conjucacy classes are the sets $\operatorname{Tab}(\cdot, \mu)$ of Young tableaux of weight μ.

Theorem (Lascoux-Schützenberger, 1978)

- There is a well-defined statistics $T \mapsto \operatorname{co}(T)$ on $\operatorname{Tab}(\cdot, \mu)$ such that
- $\operatorname{co}(R)=0$ for the unique row tableau $R \in \operatorname{Tab}(\cdot, \mu)$.
- Let x be the first letter of the first row of the tableau $T \neq R$, so that $T=x w$. Let T^{\prime} be the unique tableau in the plactic class of $w x$. Then $\operatorname{co}(T)=\operatorname{co}\left(T^{\prime}\right)+1$.

Cyclage and charge

- The conjugacy relation in a monoid \mathscr{M} is the equivalence \sim generated by: $u v \sim v u, \quad(u, v \in \mathscr{M})$.
- In the plactic monoid $\operatorname{Pl}(A)$, the conjucacy classes are the sets $\operatorname{Tab}(\cdot, \mu)$ of Young tableaux of weight μ.

Theorem (Lascoux-Schützenberger, 1978)

- There is a well-defined statistics $T \mapsto \operatorname{co}(T)$ on $\operatorname{Tab}(\cdot, \mu)$ such that
- $\operatorname{co}(R)=0$ for the unique row tableau $R \in \operatorname{Tab}(\cdot, \mu)$.
- Let x be the first letter of the first row of the tableau $T \neq R$, so that $T=x w$. Let T^{\prime} be the unique tableau in the plactic class of $w x$. Then $\operatorname{co}(T)=\operatorname{co}\left(T^{\prime}\right)+1$.
- Let $\mathrm{c}(T):=\max \{\operatorname{co}(U) \mid U \in \operatorname{Tab}(\cdot, \mu)\}-\operatorname{co}(T)$.

Cyclage and charge

- The conjugacy relation in a monoid \mathscr{M} is the equivalence \sim generated by: $u v \sim v u, \quad(u, v \in \mathscr{M})$.
- In the plactic monoid $\operatorname{Pl}(A)$, the conjucacy classes are the sets $\operatorname{Tab}(\cdot, \mu)$ of Young tableaux of weight μ.

Theorem (Lascoux-Schützenberger, 1978)

- There is a well-defined statistics $T \mapsto \operatorname{co}(T)$ on $\operatorname{Tab}(\cdot, \mu)$ such that
- $\operatorname{co}(R)=0$ for the unique row tableau $R \in \operatorname{Tab}(\cdot, \mu)$.
- Let x be the first letter of the first row of the tableau $T \neq R$, so that $T=x w$. Let T^{\prime} be the unique tableau in the plactic class of $w x$. Then $\operatorname{co}(T)=\operatorname{co}\left(T^{\prime}\right)+1$.
- Let $\mathrm{c}(T):=\max \{\operatorname{co}(U) \mid U \in \operatorname{Tab}(\cdot, \mu)\}-\operatorname{co}(T)$. Then $\mathrm{c}(T)$ is the required statistics.

Cyclage and charge $(\mu=(2,2,1))$

Cocharge

4

3	
2	2
1	1

3		
2		
1	1	

The plactic monoid (continued)

Marcel-Paul Schützenberger, in Pour le monoïde plaxique, a letter to G.-C. Rota, 1995.

The plactic monoid (continued)

Marcel-Paul Schützenberger, in Pour le monoïde plaxique, a letter to G.-C. Rota, 1995.

In various places (Japan, Strasbourg, MIT, Marne-la-Vallée), mathematicians developing the theory of quantum groups have found the plactic monoid or one of its quotients as particular cases of their constructions: when, in their poetics, they let the temperature q tend to 0 in order to crystallize them.

The plactic monoid (continued)

Marcel-Paul Schützenberger, in Pour le monoïde plaxique, a letter to G.-C. Rota, 1995.

In various places (Japan, Strasbourg, MIT, Marne-la-Vallée), mathematicians developing the theory of quantum groups have found the plactic monoid or one of its quotients as particular cases of their constructions: when, in their poetics, they let the temperature q tend to 0 in order to crystallize them.
J.-Y. Thibon and B. Leclerc are sailing up the big rivers of this continent which they are discovering. A. Lascoux is organizing the expedition, and I am watching them going off, lying in my hammock hanging from mangroves at the estuary.

LLT in action

LLT polynomials

LLT polynomials

- We can write

$$
Q_{\mu}^{\prime}(q ; x)=\sum_{\lambda} K_{\lambda, \mu}(q) s_{\lambda}(x)
$$

where $Q_{\mu}^{\prime}(q ; x)$ is the modified dual Hall-Littlewood function.

LLT polynomials

- We can write

$$
Q_{\mu}^{\prime}(q ; x)=\sum_{\lambda} K_{\lambda, \mu}(q) s_{\lambda}(x)
$$

where $Q_{\mu}^{\prime}(q ; x)$ is the modified dual Hall-Littlewood function.

- $Q_{\mu}^{\prime}(1 ; x)=\prod_{k} h_{\mu_{k}}(x)$, so $Q_{\mu}^{\prime}(q ; x)$ is a q-analogue of a product of complete homogeneous functions.

LLT polynomials

- We can write

$$
Q_{\mu}^{\prime}(q ; x)=\sum_{\lambda} K_{\lambda, \mu}(q) s_{\lambda}(x)
$$

where $Q_{\mu}^{\prime}(q ; x)$ is the modified dual Hall-Littlewood function.

- $Q_{\mu}^{\prime}(1 ; x)=\prod_{k} h_{\mu_{k}}(x)$, so $Q_{\mu}^{\prime}(q ; x)$ is a q-analogue of a product of complete homogeneous functions.
- LLT polynomials are generalizations of the $Q_{\mu}^{\prime}(q ; x)$ giving q-analogues of products of Schur functions.

LLT polynomials

- We can write

$$
Q_{\mu}^{\prime}(q ; x)=\sum_{\lambda} K_{\lambda, \mu}(q) s_{\lambda}(x)
$$

where $Q_{\mu}^{\prime}(q ; x)$ is the modified dual Hall-Littlewood function.

- $Q_{\mu}^{\prime}(1 ; x)=\prod_{k} h_{\mu_{k}}(x)$, so $Q_{\mu}^{\prime}(q ; x)$ is a q-analogue of a product of complete homogeneous functions.
- LLT polynomials are generalizations of the $Q_{\mu}^{\prime}(q ; x)$ giving q-analogues of products of Schur functions.
- They are defined combinatorially in terms of ribbon tableaux.

An 11-ribbon of height $h(R)=6$

A 4-ribbon tableau of spin 9

Ribbon tableaux and symmetric functions

Ribbon tableaux and symmetric functions

- Given $\lambda^{(1)}, \ldots, \lambda^{(n)}$, partitions, there is a unique partition λ with n-quotient $\left(\lambda^{(1)}, \ldots, \lambda^{(n)}\right)$.

Ribbon tableaux and symmetric functions

- Given $\lambda^{(1)}, \ldots, \lambda^{(n)}$, partitions, there is a unique partition λ with n-quotient $\left(\lambda^{(1)}, \ldots, \lambda^{(n)}\right)$. There holds:

$$
\begin{aligned}
s_{\lambda(1)}(x) \cdots s_{\lambda(n)}(x) & =\sum_{\mu}\left|\operatorname{Tab}_{n}(\lambda, \mu)\right| m_{\mu}(x) \\
& =\sum_{T \in \operatorname{Tab}_{n}(\lambda, \cdot)} x^{T} .
\end{aligned}
$$

Ribbon tableaux and symmetric functions

- Given $\lambda^{(1)}, \ldots, \lambda^{(n)}$, partitions, there is a unique partition λ with n-quotient $\left(\lambda^{(1)}, \ldots, \lambda^{(n)}\right)$. There holds:

$$
\begin{aligned}
s_{\lambda(1)}(x) \cdots s_{\lambda(n)}(x) & =\sum_{\mu}\left|\operatorname{Tab}_{n}(\lambda, \mu)\right| m_{\mu}(x) \\
& =\sum_{T \in \operatorname{Tab}_{n}(\lambda, \cdot)} x^{T} .
\end{aligned}
$$

Theorem (Lascoux-L-Thibon, 1997)

- Define: $G\left(\lambda^{(1)}, \ldots, \lambda^{(n)} ; q ; x\right):=\sum_{T \in \operatorname{Tab}_{n}(\lambda, \cdot)} q^{\operatorname{spin}(T)} x^{T}$.

Ribbon tableaux and symmetric functions

- Given $\lambda^{(1)}, \ldots, \lambda^{(n)}$, partitions, there is a unique partition λ with n-quotient $\left(\lambda^{(1)}, \ldots, \lambda^{(n)}\right)$. There holds:

$$
\begin{aligned}
s_{\lambda(1)}(x) \cdots s_{\lambda(n)}(x) & =\sum_{\mu}\left|\operatorname{Tab}_{n}(\lambda, \mu)\right| m_{\mu}(x) \\
& =\sum_{T \in \operatorname{Tab}_{n}(\lambda, \cdot)} x^{T} .
\end{aligned}
$$

Theorem (Lascoux-L-Thibon, 1997)

- Define: $G\left(\lambda^{(1)}, \ldots, \lambda^{(n)} ; q ; x\right):=\sum_{T \in \operatorname{Tab}_{n}(\lambda, \cdot)} q^{\operatorname{spin}(T)} x^{T}$.
- $G\left(\lambda^{(1)}, \ldots, \lambda^{(n)} ; q ; x\right)$ is a symmetric function.

Ribbon tableaux and symmetric functions

- Given $\lambda^{(1)}, \ldots, \lambda^{(n)}$, partitions, there is a unique partition λ with n-quotient $\left(\lambda^{(1)}, \ldots, \lambda^{(n)}\right)$. There holds:

$$
\begin{aligned}
s_{\lambda(1)}(x) \cdots s_{\lambda(n)}(x) & =\sum_{\mu}\left|\operatorname{Tab}_{n}(\lambda, \mu)\right| m_{\mu}(x) \\
& =\sum_{T \in \operatorname{Tab}_{n}(\lambda, \cdot)} x^{T} .
\end{aligned}
$$

Theorem (Lascoux-L-Thibon, 1997)

- Define: $G\left(\lambda^{(1)}, \ldots, \lambda^{(n)} ; q ; x\right):=\sum_{T \in \operatorname{Tab}_{n}(\lambda, \cdot)} q^{\operatorname{spin}(T)} x^{T}$.
- $G\left(\lambda^{(1)}, \ldots, \lambda^{(n)} ; q ; x\right)$ is a symmetric function.
- $G\left(\left(\mu_{1}\right), \ldots,\left(\mu_{n}\right) ; q ; x\right)=Q_{\mu}^{\prime}(q ; x)$.

LLT polynomials (continued)

Write: $G\left(\lambda^{(1)}, \ldots, \lambda^{(n)} ; q ; x\right):=\sum_{V} c_{\lambda(1) \ldots \lambda^{(n)}}^{v}(q) s_{v}(x)$.

LLT polynomials (continued)

Write: $G\left(\lambda^{(1)}, \ldots, \lambda^{(n)} ; q ; x\right):=\sum_{v} c_{\lambda(1) \ldots \lambda(n)}^{v}(q) s_{v}(x)$.

- $c_{\lambda(1) \ldots \lambda(n)}^{V}(q)$ is a parabolic Kazhdan-Lusztig polynomial of affine type A (L-Thibon, 1998).

LLT polynomials (continued)

Write: $G\left(\lambda^{(1)}, \ldots, \lambda^{(n)} ; q ; x\right):=\sum_{v} c_{\lambda(1) \ldots \lambda(n)}^{v}(q) s_{v}(x)$.

- $c_{\lambda(1) \ldots \lambda(n)}^{V}(q)$ is a parabolic Kazhdan-Lusztig polynomial of affine type A (L-Thibon, 1998).
- $\rightsquigarrow c_{\lambda^{(1)} \ldots \lambda^{(n)}}^{v}(q) \in \mathbb{N}[q]$ (Kashiwara-Tanisaki, 1999).

LLT polynomials (continued)

Write: $G\left(\lambda^{(1)}, \ldots, \lambda^{(n)} ; q ; x\right):=\sum_{V} c_{\lambda(1) \ldots \lambda^{(n)}}^{v}(q) s_{v}(x)$.

- $c_{\lambda(1) \ldots \lambda(n)}^{V}(q)$ is a parabolic Kazhdan-Lusztig polynomial of affine type A (L-Thibon, 1998).
- $\rightsquigarrow c_{\lambda^{(1)} \ldots \lambda^{(n)}}^{v}(q) \in \mathbb{N}[q]$ (Kashiwara-Tanisaki, 1999).

Haglund, Haiman and Loehr generalized LLT polynomials to skew shapes λ / μ.

LLT polynomials (continued)

Write: $G\left(\lambda^{(1)}, \ldots, \lambda^{(n)} ; q ; x\right):=\sum_{v} c_{\lambda(1) \ldots \lambda(n)}^{v}(q) s_{v}(x)$.

- $c_{\lambda(1) \ldots \lambda(n)}^{V}(q)$ is a parabolic Kazhdan-Lusztig polynomial of affine type A (L-Thibon, 1998).
- $\rightsquigarrow c_{\lambda(1) \ldots \lambda(n)}^{v}(q) \in \mathbb{N}[q]$ (Kashiwara-Tanisaki, 1999).

Haglund, Haiman and Loehr generalized LLT polynomials to skew shapes λ / μ.

- Combinatorial expansion of Macdonald polynomials in terms of generalized LLT (Haglund-Haiman-Loehr, 2005).

LLT polynomials (continued)

Write: $G\left(\lambda^{(1)}, \ldots, \lambda^{(n)} ; q ; x\right):=\sum_{v} c_{\lambda(1) \ldots \lambda^{(n)}}^{V}(q) s_{v}(x)$.

- $c_{\lambda(1) \ldots \lambda(n)}^{V}(q)$ is a parabolic Kazhdan-Lusztig polynomial of affine type A (L-Thibon, 1998).
- $\rightsquigarrow C_{\lambda(1) \ldots \lambda(n)}^{v}(q) \in \mathbb{N}[q]$ (Kashiwara-Tanisaki, 1999).

Haglund, Haiman and Loehr generalized LLT polynomials to skew shapes λ / μ.

- Combinatorial expansion of Macdonald polynomials in terms of generalized LLT (Haglund-Haiman-Loehr, 2005).
- Positivity of generalized LLT \rightsquigarrow new proof of the positivity of (q, t)-Kostka polynomials (Haiman-Grojnowski, 2008).

Collaborators of Alain

Co-authors (by number of collaborations)
Akyildız, Ersan Barrucand, Pierre-A. Berger, Marcel Boussicault, Adrien Brunat, Josep M. Carré, Christophe Chappell, Tom Chen, William Y. C. de Gier, Jan Descouens, François Duchamp, Gérard H. E. Féray, Valentin Fu, Amy M. Fulton, william Gel'fand, Izrail' Moiseevich Hou, Qing-Hu Józefiak, Tadeusz Kassel, Christian Kerber, Adalbert Kirillov, Alexander A., Jr. Kirillov, Anatoliï N. Kohnert, Axel Krattenthaler, Christian F. Krob, Daniel Laksov, Dan Lapointe, Luc Lassalle, Michel Leclerc, Bernard Montes, Antonio Morse, Jennifer Mu, Yan-Ping Novelli, Jean-Christophe Pragacz, Piotr Rains, Eric M. Reiner, Victor Retakh, Vladimir S. Reutenauer, Christophe Scharf, Thomas Schützenberger, MarcelPaul shi, He Sorrell, Mark Thibon, Jean-Yves Thorup, Anders Warnaar, S . ole Zudilin, v. v.

Alain in Poland

Le phalanstère

Alain in China

Location: Home » People » Visitors

Faculty	
$\frac{\text { Z. X. Wan }}{\text { X. L. Li }}$	$\frac{\text { Bill Chen }}{\text { Guoce Xin }}$
$\frac{\text { Roger Yu }}{\text { W. B. Ma }}$	$\frac{\text { W. D. Gao }}{\text { Z. P. Lu }}$
$\frac{\text { Q. H. Hou }}{\text { Nancy Gu }}$	Arthur Yang

R. Entriger
L. W. Shapiro
R. N. Mohan
A. Dress
G. H. Fan
X. X. Yu

Yi Hu
Visitors in 2006
Visitors in 2005

Prof. Alain Lascoux
Researcher of Centre National de la Researche Scientifique

Email:Alain.Lascoux@univ-mlv.fr
Homepage:http://www.combinatorics.net/lascoux /index.html

Research Interests

- Algebraic Combinatorics
- Symmetric Function
- Representation Theory

Teaching

- Symmetric Function

Petition for Grothendieck

PETITION

En poursuivant M.Alexandre GROTHENDIBCK, mathématicien, le Parquet de Montpellier vient rappeler l'existence de 1'article 21 de 1 'ordonnance du 2 noverbre 1945, modifiee par la loi du 5 juillet 1972 ,
'Tout individu qui, par aide directe ou indirecte, a facilite ou tente de faciliter ℓ^{\prime} entree, la circulation ou le sejour irrégulier d'un tranger est passible d'un emprisonnement de deux mois a deux ans et d'une amende de 2000 a 200.000 Francs
Qui, par ailleurs, ${ }^{n}$ a a contrevenu a article 22 de la même ordonnance même a titre gracieux, doit en faite ea declaration dans les quarantehuit heures de l'arrivere de l'etranger, au comnissaire de police ou au maire...
Dans la situation actuelle de prêcarité et d'insêcurité des Etrangers en France, qui peut se sentir a l'abri d'une menace de poursuite, pour avoir simplement voulu aider un étranger ?
En_{n} conséquence,
as sousaignés protestent contre les mesures discrininatoires a l'egard des étrangers et demandent l^{\prime} abrogation de 1^{\prime} article 21 de 1 'ordonnance du 2.11,45.

NOM Qualite signature	nom qualite signature
CHENCINER M.deC. BENMEGUIN caissan :OGEL. $M_{c_{l}} C$ Collome ith: LESAFHEE N.ABithut Costeve M Anistant Rolsin $x \text { Ond } 2 \text { ant }$ $\xrightarrow[11]{11}$ TROTMAN Assmant sembeinér r.de cont Roseabera A. Prof. ADosebly LE. T. P. Rraf. STEKN g. M. AM. MARLIN A.R. CNRS ADRM 5 tert.	 SHouzel C. Profintinn (H +2) Souravision Chayidewhuche Coll CONNES Pavies IT AT Crodemente Parbo FLEXOR cinscr Nu. Fliso PIeNE OH,Nenig Rag-ivere

Ce texte sera transmis a Grothendieck, a la presse et a difoerentes association
 igue des Droits de l'Homene, ... $^{\prime}$

